Finiteness theorems for holomorphic mapping from products of hyperbolic Riemann surfaces

作者: Divakaran Divakaran , Jaikrishnan Janardhanan

DOI: 10.1142/S0129167X17500604

关键词:

摘要: We prove that the space of dominant/non-constant holomorphic mappings from a product hyperbolic Riemann surfaces finite type into certain manifolds can be covered by bounded domain is set.

参考文章(16)
S. Bochner, Several complex variables Indian Institute Of Astrophysics. ,(1948)
M. G. Zaľdenberg, V. Ya. Lin, Finiteness Theorems for Holomorphic Maps Springer Berlin Heidelberg. pp. 113- 172 ,(1989) , 10.1007/978-3-642-61308-1_4
Yoichi Imayoshi, Generalizations of de Franchis theorem Duke Mathematical Journal. ,vol. 50, pp. 393- 408 ,(1983) , 10.1215/S0012-7094-83-05017-2
Shoshichi KOBAYASHI, Invariant distances on complex manifolds and holomorphic mappings Journal of The Mathematical Society of Japan. ,vol. 19, pp. 460- 480 ,(1967) , 10.2969/JMSJ/01940460
Shoshichi Kobayashi, Hyperbolic complex spaces ,(1998)
Masatsugu Tsuji, On the boundary value of a bounded analytic function of several complex variables Proceedings of the Japan Academy. ,vol. 21, pp. 308- 312 ,(1945) , 10.3792/PJA/1195572475
Ian Richards, On the classification of noncompact surfaces Transactions of the American Mathematical Society. ,vol. 106, pp. 259- 269 ,(1963) , 10.1090/S0002-9947-1963-0143186-0
Shoshichi Kobayashi, Takushiro Ochiai, Meromorphic Mappings onto Compact Complex Spaces of General Type. Inventiones Mathematicae. ,vol. 31, pp. 7- 16 ,(1975) , 10.1007/BF01389863
Jaikrishnan Janardhanan, Proper holomorphic mappings between hyperbolic product manifolds International Journal of Mathematics. ,vol. 25, pp. 1450039- ,(2014) , 10.1142/S0129167X14500396
Michele de Franchis, Un teorema sulle involuzioni irrazionali Rendiconti Del Circolo Matematico Di Palermo. ,vol. 36, pp. 368- 368 ,(1913) , 10.1007/BF03016041