Classical one-dimensional Heisenberg model with an interaction of finite range

作者: T. Morita , T. Horiguchi

DOI: 10.1016/0378-4371(75)90018-7

关键词:

摘要: Abstract It is shown that the thermodynamic quantities and spin correlation functions of classical Heisenberg model on a linear chain are expressed in terms eigenvalue with smallest absolute value corresponding eigenfunction homogeneous integral equation, where range interaction assumed to be finite. The magnetization susceptibility at nonzero external magnetic fields given as function temperature, for case nearest neighbour ferromagnetic antiferromagnetic interaction. Efforts paid determine properties near zero temperature.

参考文章(5)
Tutô Nakamura, Statistical Theory of Hindered Rotation in Molecular Crystals Journal of the Physical Society of Japan. ,vol. 7, pp. 264- 269 ,(1952) , 10.1143/JPSJ.7.264
M. Blume, P. Heller, N. A. Lurie, Classical one-dimensional Heisenberg magnet in an applied field Physical Review B. ,vol. 11, pp. 4483- 4497 ,(1975) , 10.1103/PHYSREVB.11.4483
Gabriel Karl, Proof of a Conjecture by Luttinger and Tisza Physical Review B. ,vol. 7, pp. 2050- 2053 ,(1973) , 10.1103/PHYSREVB.7.2050
Michael E. Fisher, Magnetism in One-Dimensional Systems—The Heisenberg Model for Infinite Spin American Journal of Physics. ,vol. 32, pp. 343- 346 ,(1964) , 10.1119/1.1970340
T. Morita, Y. Fukui, Classical one-dimensional gas of hard rods with an interaction of finite range Physica D: Nonlinear Phenomena. ,vol. 76, pp. 616- 632 ,(1974) , 10.1016/0031-8914(74)90162-1