Positive Commutators in Non-Equilibrium Quantum Statistical Mechanics ∗

作者: Marco Merkli

DOI: 10.1007/S002200100545

关键词:

摘要: The method of positive commutators, developed for zero temperature problems over the last twenty years, has been an essential tool in spectral analysis Hamiltonians quantum mechanics. We extend this to temperatures, i.e. non-equilibrium statistical use commutator technique give alternative proof a fundamental property certain class large systems, called Return Equilibrium. This says that equilibrium states are (asymptotically) stable: if system is slightly perturbed from its state, then it converges back state as time goes infinity.

参考文章(25)
Barry Simon, Michael Reed, Fourier Analysis, Self-Adjointness ,(1975)
Vladimir Georgescu, Anne Boutet de Monvel, Werner O. Amrein, C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians ,(2013)
V. Jaksic, C.-A. Pillet, Ergodic properties of the Spin-Boson system arXiv: Adaptation and Self-Organizing Systems. ,(1995)
Rudolf Haag, Meinhard E. Mayer, Local quantum physics ,(1992)
V. Bach, J. Fröhlich, I. M. Sigal, Mathematical theory of nonrelativistic matter and radiation Letters in Mathematical Physics. ,vol. 34, pp. 183- 201 ,(1995) , 10.1007/BF01872776
Jan Dereziński, Vojkan Jakšić, Spectral Theory of Pauli–Fierz Operators Journal of Functional Analysis. ,vol. 180, pp. 243- 327 ,(2001) , 10.1006/JFAN.2000.3681
M. Fannes, B. Nachtergaele, A. Verbeure, The equilibrium states of the spin-boson model Communications in Mathematical Physics. ,vol. 114, pp. 537- 548 ,(1988) , 10.1007/BF01229453
W. HUNZIKER, I. M. SIGAL, Time-Dependent Scattering Theory of N-Body Quantum Systems Reviews in Mathematical Physics. ,vol. 12, pp. 1033- 1084 ,(2000) , 10.1142/S0129055X0000040X