Fixed-rate compressed floating-point arrays

作者: Peter Lindstrom

DOI: 10.1109/TVCG.2014.2346458

关键词:

摘要: Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management random access. We present fixed-rate, near-lossless scheme that maps small blocks of 4(d) in d dimensions fixed, user-specified number bits per block, thereby allowing read write access compressed at block granularity. Our approach is inspired by fixed-rate texture methods widely adopted graphics hardware, but has been tailored the high dynamic range precision demands scientific applications. compressor based on new, lifted, orthogonal transform embedded coding, each per-block stream be truncated any point if desired, thus facilitating rate selection using single scheme. To avoid or decompression upon every access, we employ software write-back cache uncompressed blocks. designed with computational simplicity speed mind allow possibility hardware implementation, uses only fixed-point arithmetic operations value. demonstrate viability benefits lossy several applications, including visualization, quantitative analysis, numerical simulation.

参考文章(42)
Jeremy Iverson, Chandrika Kamath, George Karypis, Fast and effective lossy compression algorithms for scientific datasets international conference on parallel processing. pp. 843- 856 ,(2012) , 10.1007/978-3-642-32820-6_83
Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham, Rob Ross, Nagiza F. Samatova, Compressing the incompressible with ISABELA: in-situ reduction of spatio-temporal data international conference on parallel processing. pp. 366- 379 ,(2011) , 10.1007/978-3-642-23400-2_34
Nathanael Hübbe, Al Wegener, Julian Martin Kunkel, Yi Ling, Thomas Ludwig, Evaluating Lossy Compression on Climate Data Lecture Notes in Computer Science. pp. 343- 356 ,(2013) , 10.1007/978-3-642-38750-0_26
B.E. Usevitch, JPEG2000 extensions for bit plane coding of floating point data data compression conference. pp. 451- ,(2003) , 10.1109/DCC.2003.1194070
V. Engelson, D. Fritzson, P. Fritzson, Lossless compression of high-volume numerical data from simulations data compression conference. pp. 574- ,(2000) , 10.1109/DCC.2000.838221
Jonathan Woodring, Susan Mniszewski, Christopher Brislawn, David DeMarle, James Ahrens, Revisiting wavelet compression for large-scale climate data using JPEG 2000 and ensuring data precision ieee symposium on large data analysis and visualization. pp. 31- 38 ,(2011) , 10.1109/LDAV.2011.6092314
Allison H. Baker, Haiying Xu, John M. Dennis, Michael N. Levy, Doug Nychka, Sheri A. Mickelson, Jim Edwards, Mariana Vertenstein, Al Wegener, A methodology for evaluating the impact of data compression on climate simulation data high performance distributed computing. pp. 203- 214 ,(2014) , 10.1145/2600212.2600217
T. Akenine-Moller, J. Strom, Graphics Processing Units for Handhelds Proceedings of the IEEE. ,vol. 96, pp. 779- 789 ,(2008) , 10.1109/JPROC.2008.917719
James E. Fowler, Roni Yagel, Lossless compression of volume data Proceedings of the 1994 symposium on Volume visualization - VVS '94. pp. 43- 50 ,(1994) , 10.1145/197938.197961
Paul Ning, Lambertus Hesselink, Vector quantization for volume rendering Proceedings of the 1992 workshop on Volume visualization. pp. 69- 74 ,(1992) , 10.1145/147130.147152