Effects of long-range aerosol transport on the microphysical properties of low-level liquid clouds in the Arctic

作者: Quentin Coopman , Timothy J. Garrett , Jérôme Riedi , Sabine Eckhardt , Andreas Stohl

DOI: 10.5194/ACP-16-4661-2016

关键词:

摘要: Abstract. The properties of low-level liquid clouds in the Arctic can be altered by long-range pollution transport to region. Satellite, tracer model, and meteorological data sets are used here determine a net aerosol–cloud interaction (ACInet) parameter that expresses ratio relative changes cloud microphysical variations concentrations while accounting for dry or wet scavenging aerosols en route Arctic. For period between 2008 2010, ACInet is calculated as function water path, temperature, altitude, specific humidity, lower tropospheric stability. all data, averages 0.12 ± 0.02 cloud-droplet effective radius 0.16 ± 0.02 optical depth. It increases with humidity stability highest when low. Carefully controlling conditions we find path arctic does not respond strongly within plumes. Or, stratifying according state lead artificially exaggerated calculations magnitude impacts on clouds.

参考文章(98)
T. Mauritsen, J. Sedlar, M. Tjernström, C. Leck, M. Martin, M. Shupe, S. Sjogren, B. Sierau, P. O. G. Persson, I. M. Brooks, E. Swietlicki, An Arctic CCN-limited cloud-aerosol regime Atmospheric Chemistry and Physics. ,vol. 11, pp. 165- 173 ,(2011) , 10.5194/ACP-11-165-2011
Anthony L Westerling, Hugo G Hidalgo, Daniel R Cayan, Thomas W Swetnam, Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity Science. ,vol. 313, pp. 940- 943 ,(2006) , 10.1126/SCIENCE.1128834
H. Lihavainen, V.-M. Kerminen, L. A. Remer, Aerosol-cloud interaction determined by both in situ and satellite data over a northern high-latitude site Atmospheric Chemistry and Physics. ,vol. 10, pp. 10987- 10995 ,(2010) , 10.5194/ACP-10-10987-2010
J. Riedi, B. Marchant, S. Platnick, B. A. Baum, F. Thieuleux, C. Oudard, F. Parol, J.-M. Nicolas, P. Dubuisson, Cloud thermodynamic phase inferred from merged POLDER and MODIS data Atmospheric Chemistry and Physics. ,vol. 10, pp. 11851- 11865 ,(2010) , 10.5194/ACP-10-11851-2010
Thorsten Markus, Julienne C. Stroeve, Jeffrey Miller, Recent changes in Arctic sea ice melt onset, freezeup, and melt season length Journal of Geophysical Research. ,vol. 114, ,(2009) , 10.1029/2009JC005436
S. Twomey, The Influence of Pollution on the Shortwave Albedo of Clouds Journal of the Atmospheric Sciences. ,vol. 34, pp. 1149- 1152 ,(1977) , 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
François-Marie Bréon, Stéphane Colzy, Cloud Detection from the Spaceborne POLDER Instrument and Validation against Surface Synoptic Observations Journal of Applied Meteorology. ,vol. 38, pp. 777- 785 ,(1999) , 10.1175/1520-0450(1999)038<0777:CDFTSP>2.0.CO;2
W. N. Venables, B. D. Ripley, Modern Applied Statistics with S-Plus. Biometrics. ,vol. 52, pp. 1528- ,(1996) , 10.2307/2532871
Andrew Chang, Robust Statistics Wiley Series in Probability and Statistics. ,(1981) , 10.1002/0471725250
Steven Platnick, G. Thomas Arnold, Paul A. Hubanks, Eric G. Moody, Gala Wind, Michael D. King, Brad Wind, Collection 005 Change Summary for the MODIS Cloud Optical Property (06_OD) Algorithm ,(2006)