Database Support for Data Mining Applications: Discovering Knowledge with Inductive Queries

作者: Pier Luca Lanzi , Mika Klemettinen , Rosa Meo

DOI:

关键词:

摘要: Database Languages and Query Execution.- Inductive Databases Multiple Uses of Frequent Itemsets: The cInQ Approach.- Supporting Descriptive Rule Mining: A Comparative Study.- Declarative Data Mining Using SQL3.- Towards a Logic Language for Mining.- Knowledge Discovery in Geographical Information System.- Evaluation Version Spaces.- GUHA Method, Preprocessing Constraint Based First Order Sequences SeqLog.- Support KDD-Process.- Interactivity, Scalability Resource Control Efficient KDD DBMS.- Itemset with SQL Universal Quantification.- Deducing Bounds on the Itemsets.- Model-Independent Bounding Supports Boolean Formulae Binary Data.- Condensed Representations Sets Queries.- One-Sided Instance-Based Boundary Sets.- Domain Structures Filtering Irrelevant Patterns.- Integrity Constraints over Association Rules.

参考文章(1)
Heikki Mannila, A. Inkeri Verkamo, Ramakrishnan Srikant, Hannu Toivonen, Rakesh Agrawal, Fast discovery of association rules knowledge discovery and data mining. pp. 307- 328 ,(1996)