A Time Variational Method for the Approximate Solution of Nonlinear Systems Undergoing Multiple-Frequency Excitations

作者: K. Prabith , I. R. Praveen Krishna

DOI: 10.1115/1.4045944

关键词:

摘要:

参考文章(51)
K. Guennoun, M. Houssni, M. Belhaq, Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation Nonlinear Dynamics. ,vol. 27, pp. 211- 236 ,(2002) , 10.1023/A:1014496917703
Todd Rook, An Alternate Method to the Alternating Time-Frequency Method Nonlinear Dynamics. ,vol. 27, pp. 327- 339 ,(2002) , 10.1023/A:1015238500024
D. W. Childs, A Modal Transient Rotordynamic Model for Dual-Rotor Jet Engine Systems Journal of Engineering for Industry. ,vol. 98, pp. 876- 882 ,(1976) , 10.1115/1.3439046
Frank Schilder, Werner Vogt, Stephan Schreiber, Hinke M. Osinga, Fourier methods for quasi-periodic oscillations International Journal for Numerical Methods in Engineering. ,vol. 67, pp. 629- 671 ,(2006) , 10.1002/NME.1632
P. Sundararajan, S. T. Noah, Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems Journal of Vibration and Acoustics. ,vol. 119, pp. 9- 20 ,(1997) , 10.1115/1.2889694
I. R. Praveen Krishna, C. Padmanabhan, Improved reduced order solution techniques for nonlinear systems with localized nonlinearities Nonlinear Dynamics. ,vol. 63, pp. 561- 586 ,(2011) , 10.1007/S11071-010-9820-5
A Al-Shyyab, K Alwidyan, A Jawarneh, H Tlilan, Non-linear dynamic behaviour of compound planetary gear trains: Model formulation and semi-analytical solution: Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. ,vol. 223, pp. 199- 210 ,(2009) , 10.1243/14644193JMBD197
R. R. Pušenjak, M. M. Oblak, Incremental harmonic balance method with multiple time variables for dynamical systems with cubic non-linearities International Journal for Numerical Methods in Engineering. ,vol. 59, pp. 255- 292 ,(2004) , 10.1002/NME.875