The Minimax Strategy for Gaussian Density Estimation. pp

作者: Manfred K. Warmuth , Eiji Takimoto

DOI:

关键词:

摘要:

参考文章(9)
Katy S. Azoury, M. K. Warmuth, Relative loss bounds for on-line density estimation with the exponential family of distributions uncertainty in artificial intelligence. ,vol. 43, pp. 31- 40 ,(1999) , 10.1023/A:1010896012157
Geoffrey J. Gordon, Tom Mitchell, Approximate solutions to markov decision processes Carnegie Mellon University. ,(1999)
J. Rissanen, Stochastic complexity in learning european conference on computational learning theory. pp. 196- 210 ,(1995) , 10.1007/3-540-59119-2_178
Kenji Yamanishi, Extended Stochastic Complexity and Minimax Relative Loss Analysis algorithmic learning theory. pp. 26- 38 ,(1999) , 10.1007/3-540-46769-6_3
Yoav Freund, Predicting a binary sequence almost as well as the optimal biased coin Proceedings of the ninth annual conference on Computational learning theory - COLT '96. pp. 89- 98 ,(1996) , 10.1145/238061.238072
J.J. Rissanen, Fisher information and stochastic complexity IEEE Transactions on Information Theory. ,vol. 42, pp. 40- 47 ,(1996) , 10.1109/18.481776
K. Yamanishi, A decision-theoretic extension of stochastic complexity and its applications to learning IEEE Transactions on Information Theory. ,vol. 44, pp. 1424- 1439 ,(1998) , 10.1109/18.681319
Qun Xie, A.R. Barron, Asymptotic minimax regret for data compression, gambling and prediction international symposium on information theory. ,vol. 46, pp. 431- 445 ,(1997) , 10.1109/18.825803
Jun-ichi Takeuchi, Andrew R Barron, None, Asymptotically minimax regret by Bayes mixtures Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252). pp. 318- ,(1998) , 10.1109/ISIT.1998.708923