Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data

作者: Jinlin Zhu , Zhiqiang Ge , Zhihuan Song , Furong Gao

DOI: 10.1016/J.ARCONTROL.2018.09.003

关键词:

摘要: Industrial process data are usually mixed with missing data and outliers which can greatly affect the statistical explanation abilities for traditional data-driven modeling methods. In this …

参考文章(259)
Zhiqiang Ge, Zhihuan Song, Non-Gaussian Process Monitoring Springer, London. pp. 13- 27 ,(2013) , 10.1007/978-1-4471-4513-4_3
M. Daszykowski, K. Kaczmarek, Y. Vander Heyden, B. Walczak, Robust statistics in data analysis — A review: Basic concepts Chemometrics and Intelligent Laboratory Systems. ,vol. 85, pp. 203- 219 ,(2007) , 10.1016/J.CHEMOLAB.2006.06.016
Jakramate Bootkrajang, Ata Kabán, Label-Noise robust logistic regression and its applications european conference on machine learning. pp. 143- 158 ,(2012) , 10.1007/978-3-642-33460-3_15
Aki Vehtari, Pasi Jylänki, Jarno Vanhatalo, Robust Gaussian Process Regression with a Student- t Likelihood Journal of Machine Learning Research. ,vol. 12, pp. 3227- 3257 ,(2011)
N. A. Campbell, Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation Applied Statistics. ,vol. 29, pp. 231- 237 ,(1980) , 10.2307/2346896
Timo Koskela, Neural network methods in analysing and modelling time varying processes Helsinki University of Technology. ,(2003)
Zhouchen Lin, Arvind Ganesh, John Wright, Leqin Wu, Minming Chen, Yi Ma, None, Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix Coordinated Science Laboratory, University of Illinois at Urbana-Champaign. ,(2009)
Chuanfa Chen, Changqing Yan, Yanyan Li, A robust weighted least squares support vector regression based on least trimmed squares Neurocomputing. ,vol. 168, pp. 941- 946 ,(2015) , 10.1016/J.NEUCOM.2015.05.031
Wei Zhao, Yuehong Shen, Zhigang Yuan, Yimin Wei, Pengcheng Xu, Wei Jian, An efficient and robust algorithm for BSS by maximizing reference-based negentropy Aeu-international Journal of Electronics and Communications. ,vol. 69, pp. 1265- 1271 ,(2015) , 10.1016/J.AEUE.2015.05.008