Induced geometry from disformal transformation

作者: Fang-Fang Yuan , Peng Huang

DOI: 10.1016/J.PHYSLETB.2015.03.031

关键词:

摘要: Abstract In this note, we use the disformal transformation to induce a geometry from manifold which is originally Riemannian. The new obtained here can be considered as generalization of Weyl integrable geometry. Based on these results, further propose naturally

参考文章(42)
Israel Quiros, Scale invariance: fake appearances arXiv: General Relativity and Quantum Cosmology. ,(2014)
Erhard Scholz, Weyl geometry in late 20th century physics arXiv: History and Overview. ,(2011)
Dario Bettoni, Stefano Liberati, Disformal invariance of second order scalar-tensor theories: Framing the Horndeski action Physical Review D. ,vol. 88, pp. 084020- ,(2013) , 10.1103/PHYSREVD.88.084020
Xian Gao, Hamiltonian analysis of spatially covariant gravity Physical Review D. ,vol. 90, pp. 104033- ,(2014) , 10.1103/PHYSREVD.90.104033
Bruce A. Bassett, Stefano Liberati, Carmen Molina-París, Matt Visser, Geometrodynamics of variable-speed-of-light cosmologies Physical Review D. ,vol. 62, pp. 103518- ,(2000) , 10.1103/PHYSREVD.62.103518
Paolo Creminelli, Jérôme Gleyzes, Jorge Noreña, Filippo Vernizzi, Resilience of the standard predictions for primordial tensor modes Physical Review Letters. ,vol. 113, pp. 231301- ,(2014) , 10.1103/PHYSREVLETT.113.231301
Dario Bettoni, Lorenzo Sindoni, Stefano Liberati, Extended LCDM: generalized non-minimal coupling for dark matter fluids Journal of Cosmology and Astroparticle Physics. ,vol. 2011, pp. 007- 007 ,(2011) , 10.1088/1475-7516/2011/11/007
Israel Quiros, Ricardo García-Salcedo, Jose Edgar Madriz-Aguilar, Tonatiuh Matos, The conformal transformation’s controversy: what are we missing? General Relativity and Gravitation. ,vol. 45, pp. 489- 518 ,(2013) , 10.1007/S10714-012-1484-7
Masato Minamitsuji, Disformal transformation of cosmological perturbations Physics Letters B. ,vol. 737, pp. 139- 150 ,(2014) , 10.1016/J.PHYSLETB.2014.08.037
F T Falciano, E Goulart, Disformal invariance of Maxwell’s field equations Classical and Quantum Gravity. ,vol. 30, pp. 155020- ,(2013) , 10.1088/0264-9381/30/15/155020