A stochastic predator-prey model with delays

作者: Bo Du , Yamin Wang , Xiuguo Lian

DOI: 10.1186/S13662-015-0483-X

关键词:

摘要: A stochastic delay predator-prey system is considered. Sufficient criteria for global existence, stochastically ultimately bounded in mean and almost surely asymptotic properties are obtained.

参考文章(38)
Chikahiro Egami, Norimichi Hirano, PERIODIC SOLUTIONS IN A CLASS OF PERIODIC DELAY PREDATOR-PREY SYSTEMS The Yokohama mathematical journal = 横濱市立大學紀要. D部門, 数学. ,vol. 51, pp. 45- 61 ,(2004)
Shinzo Watanabe, Nobuyuki Ikeda, A comparison theorem for solutions of stochastic differential equations and its applications Osaka Journal of Mathematics. ,vol. 14, pp. 619- 633 ,(1977) , 10.18910/7664
Arifah Bahar, Xuerong Mao, Stochastic delay Lotka–Volterra model Journal of Mathematical Analysis and Applications. ,vol. 292, pp. 364- 380 ,(2004) , 10.1016/J.JMAA.2003.12.004
Min Zhao, Songjuan Lv, Chaos in a three-species food chain model with a Beddington–DeAngelis functional response ☆ Chaos Solitons & Fractals. ,vol. 40, pp. 2305- 2316 ,(2009) , 10.1016/J.CHAOS.2007.10.025
Daqing Jiang, Chunyan Ji, Xiaoyue Li, Donal OʼRegan, Analysis of autonomous Lotka–Volterra competition systems with random perturbation Journal of Mathematical Analysis and Applications. ,vol. 390, pp. 582- 595 ,(2012) , 10.1016/J.JMAA.2011.12.049
Rui Xu, M.A.J. Chaplain, F.A. Davidson, Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments Nonlinear Analysis-real World Applications. ,vol. 5, pp. 183- 206 ,(2004) , 10.1016/S1468-1218(03)00032-4
P. E. Kloeden, T. Shardlow, The Milstein Scheme for Stochastic Delay Differential Equations Without Using Anticipative Calculus Stochastic Analysis and Applications. ,vol. 30, pp. 181- 202 ,(2012) , 10.1080/07362994.2012.628907