Convection in Liquids

作者: J.K. Platten , Jean Claude Legros

DOI:

关键词:

摘要: A : Introduction.- I - Fundamental Laws and Basic Concepts.- 1. Balance equations for incompressible fluids.- A. Conservation of mass.- B. momentum.- C. energy.- 2. thermodynamic relations entropy balance equation second law.- Alternative forms the energy equation.- The law thermodynamics.- 3. Kinetic constitutive equations.- 4. Systems coordinates.- Rectangular Cylindrical Special two-dimentional case stream function.- 5. Equations fluctuations around a steady state.- 6. Definition stability.- 7. Normal modes.- 8. Dimensionless numbers in fluid dynamics heat transfer problems.- Exercices.- Bibliographical notes.- II Mathematical Background Computational Techniques.- Use variational principles and/or stationary properties integrals.- Elements calculus. Euler-Lagrange Variational approach to conservations laws based on nonequilibrium thermodynamics theory local potential.- numerical methods associated with potential theory.- D. Relation between Galerkin techniques.- Applications stability excess linear eigenvalue Stability criterion Lyapounov Purely Finite differences methods.- Conversion boundary value problem into an initial problem.- B Fluids at Constant Density, Isothermal Forced Convection.- III Planar Flows Newtonian Fluids.- Poiseuille Couette flow.- Plane flow rectangular channels.- General statements hydrodynamic forced convection.- Orr-Sommerfeld or presentations equation. Its relation technique.- Chock-Schechter integration scheme.- Orr Prigogine-Glansdorff criterion.- Numerical solutions Selection trial functions.- Solution U = constant.- plane a. Effect b. High Reynolds numbers.- c. Two three dimensional perturbations without elimination variables. Squire's theorem.- d. difference e. using method.- f. discussion, comparison experiments.- Nonlinear restricted nonlinear Influence amplitude disturbance.- An oscillatory solution planar-Poiseuille Existence statistically states.- periodic flows.- instability new Remarks transition turbulence.- IV pipe.- down annular convection cylindrical equivalent Non axisymmetric disturbances.- Linear pipe respect two-dimensional three-dimensional non V Flow Non-Newtonian Stress-Strain some particular non-newtonian Coleman-Noll model.- order viscoelastic fluid.- generalized sufficient condition Instability result.- fluid..- C One Component Systems.- VI Free Convection Fluid.- Benard problem. simple conditions.- Solutions approximate calculations.- integration.- Experimental aspect.- E. lateral boundaries.- F. Extension Surface tension effect.- magnetic field.- non-linear Approximate computational Global Variation Nusselt number Rayleigh (free conditions).- (rigid convective cells number.- Fine structure Behavior near threshold.- far from critical point.- Lorenz routes thermogravitational process.- state profile.- VII One-Component aspects effect temperature gradients.- Temperature gradients imposed by due viscous heating.- interest.- including Further discussion multiplicity states when taking account VIII Mixed Introduction two disturbances extension Experiments onset free superposed small laminar D Multicomponent IX influence concentration Formulation linearized conservation thermohaline thermal diffusion (or Soret effect).- analysis.- role boundaries specified solute concentrations temperatures.- observations.- Coupled Exact simplified pervious rigid 0.- Results s < Postface.- Appendix A.-

参考文章(0)