Subcellular/tissue distribution and responses to oil exposure of the cytochrome P450-dependent monooxygenase system and glutathione S-transferase in freshwater prawns (Macrobrachium malcolmsonii, M. lamarrei lamarrei).

作者: S. Arun , A. Rajendran , P. Subramanian

DOI: 10.1007/S10646-006-0074-4

关键词:

摘要: Subcellular fractions (mitochondrial, cytosolic and microsomal) prepared from the tissues (hepatopancreas, muscle gill) of freshwater prawns Macrobrachium malcolmsonii lamarrei were scrutinized to investigate presence mixed function oxygenase (MFO) conjugating enzymes (glutathione-S-transferase, GST). Cytochrome P450 (CYP) other components (cytochrome b5; NADPH-cytochrome c reductase NADH-cytochrome c-reductase activities) MFO system predominantly present in hepatic microsomal fraction M. lamarrei. The results are agreement with notion that monooxygenase is mainly membrane bound endoplasmic reticulum, hepatopancreas major metabolic tissue for production biotransformation crustaceans. Further, exposed two sublethal (0.9 ppt (parts per thousand) 2.3 ppt) concentrations oil effluent. At end 30th day, hydrocarbons detoxifying analysed hepatopancreas. accumulations hydrocarbon gradually increased when effluent associated significantly enhanced levels cytochrome (180.6±6.34 pmol mg−1 protein (P<0.05 versus control, 136.5±7.1 protein) 305.6±8.5 (P<0.001 132.3±6.8 protein] 0.9 malcolmsonii; 150±6.5 (P<0.01 84.6±5.2 175±5.5 87.6±5.4 lamarrei), NADPH activity (14.7±0.6 nmol min−1 6.8±0.55 12.1±0.45 6.9±0.42 12.5±0.31 4.6±0.45 9.6±0.32 4.9±0.41 lamarrei) b5 (124.8±3.73 76.8±4.2 115.3±3.86 76.4±4.25 110±3.11 63.7±3.24 95.3±2.63 61.4±2.82 lamarrei). oil-exposed demonstrate a well-established mechanism crustaceans, response offers possibility use as biomarker early detection pollution.

参考文章(22)
MICHAEL BRIGGS, MAXINE BRIGGS, METABOLISM OF FOREIGN COMPOUNDS The Chemistry and Metabolism of Drugs and Toxins#R##N#An Introduction to Xenobiochemistry. pp. 1- 48 ,(1974) , 10.1016/B978-0-433-04225-9.50004-5
R.W. Estabrook, J. Werringloer, The measurement of difference spectra: application to the cytochromes of microsomes. Methods in Enzymology. ,vol. 52, pp. 212- 220 ,(1978) , 10.1016/S0076-6879(78)52024-7
William H. Habig, Michael J. Pabst, William B. Jakoby, Glutathione S-Transferases Journal of Biological Chemistry. ,vol. 249, pp. 7130- 7139 ,(1974) , 10.1016/S0021-9258(19)42083-8
A. Lewis Farr, Oliver H. Lowry, Rose J. Randall, Nira J. Rosebrough, Protein Measurement with the Folin Phenol Reagent Journal of Biological Chemistry. ,vol. 193, pp. 265- 275 ,(1951)
I.A. Nimmo, D.R. Coghill, J.D. Hayes, R.C. Strange, A comparison of the subcellular distribution, subunit composition and bile acid-binding activity of glutathione S-transferases from trout and rat liver Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. ,vol. 68, pp. 579- 584 ,(1981) , 10.1016/0305-0491(81)90078-X
L.D. Peters, S.C.M. O'Hara, D.R. Livingstone, Benzo[a]pyrene metabolism and xenobiotic-stimulated reactive oxygen species generation by subcellular fraction of larvae of turbot (Scophthalmus maximus L.) Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology. ,vol. 114, pp. 221- 227 ,(1996) , 10.1016/0742-8413(96)00039-4
S PANDEY, S PARVEZ, I SAYEED, R HAQUE, B BINHAFEEZ, S RAISUDDIN, Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). Science of The Total Environment. ,vol. 309, pp. 105- 115 ,(2003) , 10.1016/S0048-9697(03)00006-8