Gurson-Tvergaard-Needleman parameters identification using artificial neural networks in sheet metal blanking

作者: H. Aguir , H. Marouani

DOI: 10.1007/S12289-010-0720-5

关键词:

摘要: This paper presents a method for the identification of large used coupled damage model parameters in sheet metal blanking. The existing finite element models describe easily elastoplastic behaviour occurring during However, description evolution is much more delicate to appreciate. proposed connects (FEM) with artificial neural networks (ANN) analysis order identify values Gurson-Tvergaard-Needleman (GTN) parameters. Blanking tests are carried out obtain experimental material response under loading. A compute load displacement curve depending on GTN Via full design experiments, numerical database built up, which ANN training. properties done by minimizing error between an and predicted one function. identified law validated other configurations blanking tests.

参考文章(4)
H. Aguir, A. Chamekh, H. BelHadjSalah, A. Dogui, R. Hambli, Parameter identification of a non-associative elastoplastic constitutive model using ANN and multi-objective optimization International Journal of Material Forming. ,vol. 2, pp. 75- 82 ,(2009) , 10.1007/S12289-009-0392-1
Ridha Hambli, Abdessalam Chamekh, Hédi Bel Hadj Salah, Real-time deformation of structure using finite element and neural networks in virtual reality applications Finite Elements in Analysis and Design. ,vol. 42, pp. 985- 991 ,(2006) , 10.1016/J.FINEL.2006.03.008
H. Marouani, A. Ben Ismail, E. Hug, M. Rachik, Rate-dependent constitutive model for sheet metal blanking investigation Materials Science and Engineering: A. ,vol. 487, pp. 162- 170 ,(2008) , 10.1016/J.MSEA.2007.10.023
M Rachik, J.M Roelandt, A Maillard, Some phenomenological and computational aspects of sheet metal blanking simulation Journal of Materials Processing Technology. ,vol. 128, pp. 256- 265 ,(2002) , 10.1016/S0924-0136(02)00460-0