Global asymptotical ω -periodicity of a fractional-order non-autonomous neural networks

作者: Boshan Chen , Jiejie Chen

DOI: 10.1016/J.NEUNET.2015.04.006

关键词:

摘要: We study the global asymptotic ω -periodicity for a fractional-order non-autonomous neural networks. Firstly, based on Caputo derivative it is shown that -periodic or autonomous networks cannot generate exactly signals. Next, by using contraction mapping principle we discuss existence and uniqueness of S-asymptotically solution class Then differential integral inequality technique, Mittag-Leffler stability asymptotical periodicity networks, which shows all paths starting from arbitrary points responding to persistent, nonconstant external inputs, asymptotically converge same function may be not solution. The non-existence solutions periodic (FNN).Proof result FNN.A new concept fractional equations.Some sufficient conditions FNN.

参考文章(49)
Francesco Mainardi, Rudolf Gorenflo, Fractional Calculus: Integral and Differential Equations of Fractional Order arXiv: Mathematical Physics. ,(2008)
Arefeh Boroomand, Mohammad B. Menhaj, Fractional-order hopfield neural networks international conference on neural information processing. pp. 883- 890 ,(2008) , 10.1007/978-3-642-02490-0_108
Robert J. Plemmons, Abraham Berman, Nonnegative Matrices in the Mathematical Sciences ,(1979)
Masahiro Nakagawa, Kazuyuki Sorimachi, Basic Characteristics of a Fractance Device IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 75, pp. 1814- 1819 ,(1992)
Brian N Lundstrom, Matthew H Higgs, William J Spain, Adrienne L Fairhall, Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience. ,vol. 11, pp. 1335- 1342 ,(2008) , 10.1038/NN.2212
P. Arena, R. Caponetto, L. Fortuna, D. Porto, Bifurcation and Chaos in Noninteger Order Cellular Neural Networks International Journal of Bifurcation and Chaos. ,vol. 08, pp. 1527- 1539 ,(1998) , 10.1142/S0218127498001170
Claudio Cuevas, Hernán R. Henríquez, Herme Soto, Asymptotically periodic solutions of fractional differential equations Applied Mathematics and Computation. ,vol. 236, pp. 524- 545 ,(2014) , 10.1016/J.AMC.2014.03.037