Dynamical properties of a fractional reaction-diffusion trimolecular biochemical model with autocatalysis

作者: Hongwei Yin , Xiaoqing Wen

DOI: 10.1186/S13662-017-1427-4

关键词:

摘要: In this paper, a reaction-diffusion trimolecular biochemical model with autocatalysis and fractional-order derivative is proposed. We establish the existence uniqueness of positive solution to system in Besov space. Besides, for system, we obtain stability, Hopf Turing bifurcations spatial patterns. These dynamic behaviors are slightly different from those its corresponding first-order system. The difference illustrated by performing some numerical simulations, through which our main results verified.

参考文章(39)
Herbert Amann, Linear and Quasilinear Parabolic Problems Birkhäuser Basel. ,(1995) , 10.1007/978-3-0348-9221-6
D. Matignon, Stability results for fractional differential equations with applications to control processing the multiconference on computational engineering in systems applications. pp. 963- 968 ,(1996)
G. Radons, Rainer Klages, Igor M. Sokolov, Anomalous transport : foundations and applications Wiley-VCH. ,(2008)
Hari M Srivastava, Anatoly A Kilbas, Juan J Trujillo, Theory and Applications of Fractional Differential Equations ,(2006)
Thabet Maraaba (Abdeljawad), Dumitru Baleanu, Fahd Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives Journal of Mathematical Physics. ,vol. 49, pp. 083507- ,(2008) , 10.1063/1.2970709
Kai Diethelm, Neville J. Ford, Analysis of Fractional Differential Equations Journal of Mathematical Analysis and Applications. ,vol. 265, pp. 229- 248 ,(2002) , 10.1006/JMAA.2000.7194
A. Jacobo, A. J. Hudspeth, Reaction–diffusion model of hair-bundle morphogenesis Proceedings of the National Academy of Sciences of the United States of America. ,vol. 111, pp. 15444- 15449 ,(2014) , 10.1073/PNAS.1417420111
JinRong Wang, Yong Zhou, A class of fractional evolution equations and optimal controls Nonlinear Analysis-real World Applications. ,vol. 12, pp. 262- 272 ,(2011) , 10.1016/J.NONRWA.2010.06.013
Ira Mellman, Tom Misteli, Computational cell biology Journal of Cell Biology. ,vol. 161, pp. 463- 464 ,(2003) , 10.1083/JCB.200303202
Ping Liu, Junping Shi, Yuwen Wang, Xiuhong Feng, Bifurcation analysis of reaction–diffusion Schnakenberg model Journal of Mathematical Chemistry. ,vol. 51, pp. 2001- 2019 ,(2013) , 10.1007/S10910-013-0196-X