A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions

作者: Matti Maltamo , David A. Coomes , Antonio García-Abril , Yadvinder Malhi , José Antonio Manzanera

DOI: 10.1016/J.FORECO.2018.10.057

关键词:

摘要: Reliable assessment of forest structural types (FSTs) aids sustainable management. We developed a methodology for the identification FSTs using airborne laser scanning (ALS), and demonstrate its generality by applying it to forests from Boreal, Mediterranean Atlantic biogeographical regions. First, hierarchal clustering analysis (HCA) was applied clusters were determined in coniferous deciduous four variables obtained inventory data – quadratic mean diameter (QMD), Gini coefficient (GC), basal area larger than (BALM) density stems (N) –. Then, classification regression tree (CART) used extract empirical threshold values discriminating those clusters. Based on trees, GC BALM most important FSTs. Lower, medium high characterize single storey FSTs, multi-layered exponentially decreasing size distributions (reversed J), respectively. Within each these main FST groups, we also identified young/mature sparse/dense subtypes QMD N. Then similar predictors derived ALS maximum height (Max), L-coefficient variation (Lcv), L-skewness (Lskew), percentage penetration (cover), nearest neighbour method predict greater overall accuracy (0.87) as compared (0.72). Our proves usefulness heterogeneity across simple two-tier approach paves way toward transnational assessments structure bioregions.

参考文章(71)
Kevin L. O''Hara, Bradley G. Smith, Paul Hessburg, Penelope A. Latham, A structural classification for inland northwest forest vegetation. Western Journal of Applied Forestry. ,(1996)
W. N. Venables, B. D. Ripley, Modern Applied Statistics with S Springer. ,(2010) , 10.1007/978-0-387-21706-2
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
Brian O'Connor, Cristina Secades, Johannes Penner, Ruth Sonnenschein, Andrew Skidmore, Neil D. Burgess, Jon M. Hutton, Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets Remote Sensing in Ecology and Conservation. ,vol. 1, pp. 19- 28 ,(2015) , 10.1002/RSE2.4
Rubén Valbuena, Kalle Eerikäinen, Petteri Packalen, Matti Maltamo, Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure Ecological Indicators. ,vol. 60, pp. 574- 585 ,(2016) , 10.1016/J.ECOLIND.2015.08.001
Petteri Vihervaara, Laura Mononen, Ari-Pekka Auvinen, Raimo Virkkala, Yihe Lü, Inka Pippuri, Petteri Packalen, Ruben Valbuena, Jari Valkama, How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale Landscape Ecology. ,vol. 30, pp. 501- 516 ,(2015) , 10.1007/S10980-014-0137-5
Yves Bergeron, Alain Leduc, Brian Harvey, Sylvie Gauthier, Natural fire regime : a guide for sustainable management of the Canadian boreal forest Silva Fennica. ,vol. 36, pp. 81- ,(2002) , 10.14214/SF.553
Catherine A Sugar, Gareth M James, Finding the Number of Clusters in a Dataset Journal of the American Statistical Association. ,vol. 98, pp. 750- 763 ,(2003) , 10.1198/016214503000000666
Sooyoung Kim, Robert J. McGaughey, Hans-Erik Andersen, Gerard Schreuder, Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data Remote Sensing of Environment. ,vol. 113, pp. 1575- 1586 ,(2009) , 10.1016/J.RSE.2009.03.017
DAVID A. COOMES, ROBERT B. ALLEN, Mortality and tree‐size distributions in natural mixed‐age forests Journal of Ecology. ,vol. 95, pp. 27- 40 ,(2007) , 10.1111/J.1365-2745.2006.01179.X