Hopf bifurcation of an oscillator with quadratic and cubic nonlinearities and with delayed velocity feedback

作者: Wang Huailei , Wang Zaihua , Hu Haiyan

DOI: 10.1007/BF02489381

关键词:

摘要: This paper studies the local dynamics of an SDOF system with quadratic and cubic stiffness terms, linear delayed velocity feedback. The analysis indicates that for a sufficiently large feedback gain, equilibrium may undergo number stability switches increase time delay, then becomes unstable forever. At each critical value delay which changes its stability, generic Hopf bifurcation occurs periodic motion emerges in one-sided neighbourhood delay. method Fredholm alternative is applied to determine bifurcating motions their stability. It stresses on effect parameters stable regions amplitudes solutions.

参考文章(20)
A. Casal, M. Freedman, A Poincaré-Lindstedt approach to bifurcation problems for differential-delay equations IEEE Transactions on Automatic Control. ,vol. 25, pp. 967- 973 ,(1980) , 10.1109/TAC.1980.1102450
J. Xu, K.W. Chung, Effects of time delayed position feedback on a van der Pol–Duffing oscillator Physica D: Nonlinear Phenomena. ,vol. 180, pp. 17- 39 ,(2003) , 10.1016/S0167-2789(03)00049-6
ZH Wang, HY Hu, None, STABILITY SWITCHES OF TIME-DELAYED DYNAMIC SYSTEMS WITH UNKNOWN PARAMETERS Journal of Sound and Vibration. ,vol. 233, pp. 215- 233 ,(2000) , 10.1006/JSVI.1999.2817
R.H. Plaut, J.-C. Hsieh, Non-linear structural vibrations involving a time delay in damping Journal of Sound and Vibration. ,vol. 117, pp. 497- 510 ,(1987) , 10.1016/S0022-460X(87)80068-8
J.L. Moiola, G. Chen, Hopf bifurcations in time-delayed nonlinear feedback control systems conference on decision and control. ,vol. 1, pp. 942- 948 ,(1995) , 10.1109/CDC.1995.479106
Haiyan Hu, Earl H. Dowell, Lawrence N. Virgin, Resonances of a Harmonically Forced Duffing Oscillator with Time Delay State Feedback Nonlinear Dynamics. ,vol. 15, pp. 311- 327 ,(1998) , 10.1023/A:1008278526811
H. Walther, S.M. Verduyn lunel, O. Diekman, Stephanus A. van Gils, Delay Equations: Functional-, Complex-, and Nonlinear Analysis Applied mathematical sciences. ,(1995)
Gábor Stépán, None, Modelling nonlinear regenerative effects in metal cutting Philosophical Transactions of the Royal Society A. ,vol. 359, pp. 739- 757 ,(2001) , 10.1098/RSTA.2000.0753
XIAOFENG LIAO, GUANRONG CHEN, LOCAL STABILITY, HOPF AND RESONANT CODIMENSION-TWO BIFURCATION IN A HARMONIC OSCILLATOR WITH TWO TIME DELAYS International Journal of Bifurcation and Chaos. ,vol. 11, pp. 2105- 2121 ,(2001) , 10.1142/S0218127401003425