Network Inference and Maximum Entropy Estimation on Information Diagrams

作者: Elliot A. Martin , Jaroslav Hlinka , Alexander Meinke , Filip Děchtěrenko , Jaroslav Tintěra

DOI: 10.1038/S41598-017-06208-W

关键词:

摘要: Maximum entropy estimation is of broad interest for inferring properties systems across many disciplines. Using a recently introduced technique estimating the maximum set random discrete variables when conditioning on bivariate mutual informations and univariate entropies, we show how this can be used to estimate direct network connectivity between interacting units from observed activity. As generic example, consider phase oscillators that our approach typically superior simply using information. In addition, propose nonparametric formulation connected informations, test explanatory power description in general. We give an illustrative example showing agrees with existing parametric formulation, demonstrate its applicability advantages resting-state human brain networks, which also discuss effective connectivity. Finally, generalize continuous vastly expand types information-theoretic quantities one condition on. This allows us establish significant over ones. Not only does method perform favorably undersampled regime, where methods fail, but it dramatically less computationally expensive as cardinality increases.

参考文章(51)
Giulio Tirabassi, Ricardo Sevilla-Escoboza, Javier M. Buldú, Cristina Masoller, Inferring the connectivity of coupled oscillators from time-series statistical similarity analysis Scientific Reports. ,vol. 5, pp. 10829- 10829 ,(2015) , 10.1038/SREP10829
Greg J. Stephens, William Bialek, Statistical mechanics of letters in words. Physical Review E. ,vol. 81, pp. 066119- 066119 ,(2010) , 10.1103/PHYSREVE.81.066119
Ning Xi, Rachata Muneepeerakul, Sandro Azaele, Yougui Wang, Maximum entropy model for business cycle synchronization Physica A-statistical Mechanics and Its Applications. ,vol. 413, pp. 189- 194 ,(2014) , 10.1016/J.PHYSA.2014.07.005
Jaroslav Hlinka, Milan Paluš, Martin Vejmelka, Dante Mantini, Maurizio Corbetta, Functional connectivity in resting-state fMRI: is linear correlation sufficient? NeuroImage. ,vol. 54, pp. 2218- 2225 ,(2011) , 10.1016/J.NEUROIMAGE.2010.08.042
I. Volkov, J. R. Banavar, S. P. Hubbell, A. Maritan, Inferring species interactions in tropical forests Proceedings of the National Academy of Sciences of the United States of America. ,vol. 106, pp. 13854- 13859 ,(2009) , 10.1073/PNAS.0903244106
Ed Bullmore, Olaf Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems Nature Reviews Neuroscience. ,vol. 10, pp. 186- 198 ,(2009) , 10.1038/NRN2575
J. N. Darroch, D. Ratcliff, Generalized Iterative Scaling for Log-Linear Models Annals of Mathematical Statistics. ,vol. 43, pp. 1470- 1480 ,(1972) , 10.1214/AOMS/1177692379
Fang-Chin Yeh, Aonan Tang, Jon Hobbs, Pawel Hottowy, Wladyslaw Dabrowski, Alexander Sher, Alan Litke, John Beggs, Maximum Entropy Approaches to Living Neural Networks Entropy. ,vol. 12, pp. 89- 106 ,(2010) , 10.3390/E12010089
Takamitsu Watanabe, Satoshi Hirose, Hiroyuki Wada, Yoshio Imai, Toru Machida, Ichiro Shirouzu, Seiki Konishi, Yasushi Miyashita, Naoki Masuda, A pairwise maximum entropy model accurately describes resting-state human brain networks Nature Communications. ,vol. 4, pp. 1370- 1370 ,(2013) , 10.1038/NCOMMS2388
T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, N. V. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 19033- 19038 ,(2006) , 10.1073/PNAS.0609152103