PeakSegJoint: fast supervised peak detection via joint segmentation of multiple count data samples

作者: Toby Dylan Hocking , Guillaume Bourque

DOI:

关键词:

摘要: Joint peak detection is a central problem when comparing samples in genomic data analysis, but current algorithms for this task are unsupervised and limited to at most 2 sample types. We propose PeakSegJoint, new constrained maximum likelihood segmentation model any number of To select the peaks segmentation, we supervised penalty learning model. infer parameters these two models, use discrete optimization heuristic convex learning. In comparisons with state-of-the-art algorithms, PeakSegJoint achieves similar accuracy, faster speeds, more interpretable overlapping that occur exactly same positions across all samples.

参考文章(14)
Toby Dylan Hocking, Guillaume Bourque, Xiaojian Shao, Patricia Goerner-Potvin, Andreanne Morin, Visual annotations and a supervised learning approach for evaluating and calibrating ChIP-seq peak detectors arXiv: Genomics. ,(2014)
Guillem Rigaill, Toby Hocking, Guillaume Bourque, PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data international conference on machine learning. pp. 324- 332 ,(2015)
Xin Zeng, Rajendran Sanalkumar, Emery H Bresnick, Hongda Li, Qiang Chang, Sündüz Keleş, jMOSAiCS: joint analysis of multiple ChIP-seq datasets Genome Biology. ,vol. 14, pp. 1- 18 ,(2013) , 10.1186/GB-2013-14-4-R38
Jason Ernst, Manolis Kellis, ChromHMM: automating chromatin-state discovery and characterization Nature Methods. ,vol. 9, pp. 215- 216 ,(2012) , 10.1038/NMETH.1906
Elizabeth G. Wilbanks, Marc T. Facciotti, Evaluation of Algorithm Performance in ChIP-Seq Peak Detection PLoS ONE. ,vol. 5, pp. e11471- ,(2010) , 10.1371/JOURNAL.PONE.0011471
Orion J. Buske, Jeff A. Bilmes, William Stafford Noble, Zhiping Weng, Michael M. Hoffman, Jie Wang, Unsupervised pattern discovery in human chromatin structure through genomic segmentation international conference on bioinformatics. ,vol. 9, pp. 813- ,(2013) , 10.1145/2506583.2506701
Yanxiao Zhang, Yu-Hsuan Lin, Timothy D. Johnson, Laura S. Rozek, Maureen A. Sartor, PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data. Bioinformatics. ,vol. 30, pp. 2568- 2575 ,(2014) , 10.1093/BIOINFORMATICS/BTU372
A. M. Szalkowski, C. D. Schmid, Rapid innovation in ChIP-seq peak-calling algorithms is outdistancing benchmarking efforts Briefings in Bioinformatics. ,vol. 12, pp. 626- 633 ,(2011) , 10.1093/BIB/BBQ068
Timothy Bailey, Pawel Krajewski, Istvan Ladunga, Celine Lefebvre, Qunhua Li, Tao Liu, Pedro Madrigal, Cenny Taslim, Jie Zhang, Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data PLoS Computational Biology. ,vol. 9, pp. e1003326- ,(2013) , 10.1371/JOURNAL.PCBI.1003326
Alice Cleynen, Michel Koskas, Emilie Lebarbier, Guillem Rigaill, Stéphane Robin, Segmentor3IsBack: an R package for the fast and exact segmentation of Seq-data Algorithms for Molecular Biology. ,vol. 9, pp. 6- 6 ,(2014) , 10.1186/1748-7188-9-6