Color Set Size Problem with Application to String Matching

作者: Lucas Chi , Kwong Hui

DOI: 10.1007/3-540-56024-6_19

关键词:

摘要: The Color Set Size problem is: Given a rooted tree of size n with l leaves colored from 1 to m, m ≤ l, for each vertex u find the number different leaf colors in subtree at u. This formulation, together Generalized Suffix Tree data structure has applications string matching. paper gives an optimal sequential solution color set and matching including linear time algorithm finding longest substring common least k out input strings all between m. In addition, parallel solutions above problems are given. These may shed light on computational biology, such as multiple alignment problem.

参考文章(21)
Alberto Apostolico, The Myriad Virtues of Subword Trees Springer, Berlin, Heidelberg. pp. 85- 96 ,(1985) , 10.1007/978-3-642-82456-2_6
Stephen F. Altschul, David J. Lipman, Trees, stars, and multiple biological sequence alignment Siam Journal on Applied Mathematics. ,vol. 49, pp. 197- 209 ,(1989) , 10.1137/0149012
Humberto Carrillo, David Lipman, The multiple sequence alignment problem in biology Siam Journal on Applied Mathematics. ,vol. 48, pp. 1073- 1082 ,(1988) , 10.1137/0148063
Uzi Vishkin, Robert Endre Tarjan, An Efficient Parallel Biconnectivity Algorithm ,(2011)
A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, U. Vishkin, Parallel construction of a suffix tree with applications Algorithmica. ,vol. 3, pp. 347- 365 ,(1988) , 10.1007/BF01762122
Sanguthevar Rajasekaran, John H. Reif, Optimal and sublogarithmic time randomized parallel sorting algorithms SIAM Journal on Computing. ,vol. 18, pp. 594- 607 ,(1989) , 10.1137/0218041
Torben Hagerup, Towards optimal parallel bucket sorting Information & Computation. ,vol. 75, pp. 39- 51 ,(1987) , 10.1016/0890-5401(87)90062-9
Uzi Vishkin, On efficient parallel strong orientation Information Processing Letters. ,vol. 20, pp. 235- 240 ,(1985) , 10.1016/0020-0190(85)90025-0