Finite element procedures for nonlinear structures in moving coordinates. Part II: Infinite beam under moving harmonic loads

作者: Vu-Hieu Nguyen , Denis Duhamel

DOI: 10.1016/J.COMPSTRUC.2008.04.010

关键词:

摘要: This paper presents a numerical approach to the stationary solution of infinite Euler-Bernoulli beams posed on Winkler foundations under moving harmonic loads. The procedure proposed in Part 1 [Nguyen V-H, Duhamel D. Finite element procedures for nonlinear structures coordinates. I: bar axial Comput Struct 2006;84(21):1368-80], which has been applied consider longitudinal vibration rods constant amplitude loads coordinates, is enhanced herein case with time-dependent amplitudes. Firstly, separation variables used distinguish convection component from displacement function. Then, condition obtain dynamic formulation Numerical examples are computed linear structure validate method. Finally, elastic foundation problems presented.

参考文章(17)
Klaus-Jürgen Bathe, Finite Element Procedures ,(1995)
Torbjörn Ekevid, Nils-Erik Wiberg, Wave Propagation Related to High-Speed Train - a Scaled Boundary FE-approach for Unbounded Domains Computer Methods in Applied Mechanics and Engineering. ,vol. 191, pp. 3947- 3964 ,(2002) , 10.1016/S0045-7825(02)00341-9
Torbjörn Ekevid, Martin X.D. Li, Nils-Erik Wiberg, Adaptive FEA of wave propagation induced by high-speed trains Computers & Structures. ,vol. 79, pp. 2693- 2704 ,(2001) , 10.1016/S0045-7949(01)00043-8
M.S.A. Hardy, The generation of waves in infinite structures by moving harmonic loads Journal of Sound and Vibration. ,vol. 180, pp. 637- 644 ,(1995) , 10.1006/JSVI.1995.0104
Yung-Hsiang Chen, Yen-Hui Huang, Dynamic stiffness of infinite Timoshenko beam on viscoelastic foundation in moving co‐ordinate International Journal for Numerical Methods in Engineering. ,vol. 48, pp. 1- 18 ,(2000) , 10.1002/(SICI)1097-0207(20000510)48:1<1::AID-NME858>3.0.CO;2-G
L. ANDERSEN, S.R.K. NIELSEN, P.H. KIRKEGAARD, FINITE ELEMENT MODELLING OF INFINITE EULER BEAMS ON KELVIN FOUNDATIONS EXPOSED TO MOVING LOADS IN CONVECTED CO-ORDINATES Journal of Sound and Vibration. ,vol. 241, pp. 587- 604 ,(2001) , 10.1006/JSVI.2000.3314
Joseph R. Rieker, Yih-Hwang Lin, Martin W. Trethewey, Discretization considerations in moving load finite element beam models Finite Elements in Analysis and Design. ,vol. 21, pp. 129- 144 ,(1996) , 10.1016/0168-874X(95)00029-S
G. Pan, H. Okada, S.N. Atluri, Nonlinear transient dynamic analysis of soil-pavement interaction under moving load: a coupled BEM-FEM approach Engineering Analysis With Boundary Elements. ,vol. 14, pp. 99- 112 ,(1994) , 10.1016/0955-7997(94)90085-X