Modulation of metabolic control by angiotensin converting enzyme (ACE) inhibition.

作者: Stephan Jacob , Erik J. Henriksen

DOI: 10.1002/JCP.10294

关键词:

摘要: Angiotensin converting enzyme (ACE) inhibitors are a widely used intervention for blood pressure control, and particularly beneficial in hypertensive type 2 diabetic subjects with insulin resistance. The hemodynamic effects of ACE associated enhanced levels the vasodilator bradykinin decreased production vasoconstrictor growth factor angiotensin II (ATII). In insulin-resistant conditions, can also enhance whole-body glucose disposal transport activity skeletal muscle. This review will focus on metabolic consequences inhibition At cellular level, acutely uptake muscle via two mechanisms. One mechanism involves action bradykinin, acting through B2 receptors, to increase nitric oxide (NO) ultimately transport. A second diminution inhibitory ATII, AT1 system. acute actions upregulation signaling, including IRS-1 tyrosine phosphorylation phosphatidylinositol-3-kinase activity, increased cell-surface GLUT-4 transporter protein. Chronic administration or antagonists rodents protein expression myocardium. These data support concept that beneficially modulate control states, possibly NO-dependent effect and/or antagonism ATII © 2003 Wiley-Liss, Inc.

参考文章(101)
Thomas W Balon, JERRY L Nadler, None, Nitric oxide release is present from incubated skeletal muscle preparations Journal of Applied Physiology. ,vol. 77, pp. 2519- 2521 ,(1994) , 10.1152/JAPPL.1994.77.6.2519
Kara R. Foianini, Michelle S. Steen, Tyson R. Kinnick, Melanie B. Schmit, Erik B. Youngblood, Erik J. Henriksen, Effects of exercise training and ACE inhibition on insulin action in rat skeletal muscle Journal of Applied Physiology. ,vol. 89, pp. 687- 694 ,(2000) , 10.1152/JAPPL.2000.89.2.687
P. A. King, J. J. Betts, E. D. Horton, E. S. Horton, Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscle American Journal of Physiology-regulatory Integrative and Comparative Physiology. ,vol. 265, ,(1993) , 10.1152/AJPREGU.1993.265.2.R447
L. J. Goodyear, M. F. Hirshman, E. S. Horton, Exercise-induced translocation of skeletal muscle glucose transporters. American Journal of Physiology-endocrinology and Metabolism. ,vol. 261, ,(1991) , 10.1152/AJPENDO.1991.261.6.E795
R. Nesher, I. E. Karl, D. M. Kipnis, Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. American Journal of Physiology-cell Physiology. ,vol. 249, ,(1985) , 10.1152/AJPCELL.1985.249.3.C226
Peter F. Kokkinos, Vasilios Papademetriou, Exercise and hypertension Coronary Artery Disease. ,vol. 11, pp. 99- 102 ,(2000) , 10.1097/00019501-200003000-00002
Peter R. Shepherd, Barbara B. Kahn, Glucose transporters and insulin action--implications for insulin resistance and diabetes mellitus. The New England Journal of Medicine. ,vol. 341, pp. 248- 257 ,(1999) , 10.1056/NEJM199907223410406
Steven M. Haffner, Seppo Lehto, Tapani Rönnemaa, Kalevi Pyörälä, Markku Laakso, Mortality from Coronary Heart Disease in Subjects with Type 2 Diabetes and in Nondiabetic Subjects with and without Prior Myocardial Infarction The New England Journal of Medicine. ,vol. 339, pp. 229- 234 ,(1998) , 10.1056/NEJM199807233390404
M. A. Lee, M. Bohm, M. Paul, M. Bader, U. Ganten, D. Ganten, Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27 American Journal of Physiology-endocrinology and Metabolism. ,vol. 270, ,(1996) , 10.1152/AJPENDO.1996.270.6.E919