Type-2 Fuzzy Mixture of Gaussians Model: Application to Background Modeling

作者: Fida El Baf , Thierry Bouwmans , Bertrand Vachon

DOI: 10.1007/978-3-540-89639-5_74

关键词:

摘要: Background modeling is a key step of background subtraction methods used in the context static camera. The goal to obtain clean and then detect moving objects by comparing it with current frame. Mixture Gaussians Model [1] most popular technique presents some limitations when dynamic changes occur scene like camera jitter, illumination movement background. Furthermore, MGM initialized using training sequence which may be noisy and/or insufficient model correctly All these critical situations generate false classification foreground detection mask due related uncertainty. To take into account this uncertainty, we propose use Type-2 Fuzzy Model. Results show relevance proposed approach presence waving trees water rippling.

参考文章(23)
Ismail Haritaoglu, Alex Pentland, Christopher Wren, Larry Davis, David Harwood, Thanarat Horprasert, Real-time 3D Motion Capture ,(1998)
Ahmed Elgammal, David Harwood, Larry Davis, Non-parametric Model for Background Subtraction Lecture Notes in Computer Science. pp. 751- 767 ,(2000) , 10.1007/3-540-45053-X_48
Yinhai Wang, Mark E Hallenbeck, Jianyang Zheng, Nancy L Nihan, Extracting Roadway Background Image: Mode-Based Approach Transportation Research Record. ,vol. 1944, pp. 82- 88 ,(2006) , 10.3141/1944-11
N. J. B. McFarlane, C. P. Schofield, Segmentation and tracking of piglets in images machine vision applications. ,vol. 8, pp. 187- 193 ,(1995) , 10.1007/BF01215814
F. El Baf, T. Bouwmans, B. Vachon, Comparison of Background Subtraction Methods for a Multimedia Application international conference on systems signals and image processing. pp. 385- 388 ,(2007) , 10.1109/IWSSIP.2007.4381122
Joel Carranza, Christian Theobalt, Marcus A. Magnor, Hans-Peter Seidel, Free-viewpoint video of human actors international conference on computer graphics and interactive techniques. ,vol. 22, pp. 569- 577 ,(2003) , 10.1145/1201775.882309
C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking computer vision and pattern recognition. ,vol. 2, pp. 246- 252 ,(1999) , 10.1109/CVPR.1999.784637
Christopher M. Bishop, John M. Winn, Non-linear Bayesian Image Modelling Computer Vision - ECCV 2000. ,vol. 1, pp. 3- 17 ,(2000) , 10.1007/3-540-45054-8_1
Stefano Messelodi, Carla Maria Modena, Nicola Segata, Michele Zanin, A kalman filter based background updating algorithm robust to sharp illumination changes international conference on image analysis and processing. pp. 163- 170 ,(2005) , 10.1007/11553595_20
R. Chang, T. Gandhi, M.M. Trivedi, Vision modules for a multi-sensory bridge monitoring approach international conference on intelligent transportation systems. pp. 971- 976 ,(2004) , 10.1109/ITSC.2004.1399038