Global transition zone tomography

作者: Jeroen Ritsema , Hendrik Jan van Heijst , John H. Woodhouse

DOI: 10.1029/2003JB002610

关键词:

摘要: [1] Our understanding of large-scale mantle dynamics depends on accurate models seismic velocity variation in the upper transition zone (400–1000 km depth). With Mode Branch Stripping technique (MBS) van Heijst and Woodhouse [1997] it is possible to extract dispersion characteristics overtone surface wave signals from single source-receiver waveforms. Such data provide new global constraints. We combined more than a million measurements path-average phase with normal-mode splitting functions body travel times construct model S20RTSb shear heterogeneity throughout mantle. discuss detail resolution structural zone. The main observations are following: (1) Large-scale variations (15%) 250 at least 5 larger deeper High-velocity keels Archean cratons extend about 200 depth. Low velocities related mid-ocean ridge upwelling confined 150 (2) 220-km discontinuity PREM cannot be reconciled Rayleigh dispersion, especially oceans. (3) below oceanic lithosphere (350–400 depth) 1–1.5% lower beneath continental lithosphere. (4) slabs former conspicuous structures just above 670-km discontinuity. They 1100 depth South American, Indonesian, Kermadec subduction zones, indicating that penetrate through several zones. (5) observe lower-than-average eight hot spots (including Hawaii, Iceland, Easter, Afar). It is, however, difficult accurately estimate their extent because limited vertical resolution.

参考文章(72)
Warren B. Hamilton, The Closed Upper‐Mantle Circulation of Plate Tectonics American Geophysical Union (AGU). pp. 359- 410 ,(2013) , 10.1029/GD030P0359
Guy Masters, Gabi Laske, Harold Bolton, Adam Dziewonski, The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure Geophysical monograph. ,vol. 117, pp. 63- 87 ,(2013) , 10.1029/GM117P0063
A. L. Lerner-Lam, T. H. Jordan, Earth structure from fundamental and higher-mode waveform analysis Geophysical Journal International. ,vol. 75, pp. 759- 797 ,(1983) , 10.1111/J.1365-246X.1983.TB05009.X
Charles Mégnin, Barbara Romanowicz, The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms Geophysical Journal International. ,vol. 143, pp. 709- 728 ,(2000) , 10.1046/J.1365-246X.2000.00298.X
Michel Cara, Lateral variations of S velocity in the upper mantle from higher Rayleigh modes Geophysical Journal International. ,vol. 57, pp. 649- 670 ,(1979) , 10.1111/J.1365-246X.1979.TB06783.X
Yu J. Gu, Adam M. Dziewonski, Weijia Su, Göran Ekström, Models of the mantle shear velocity and discontinuities in the pattern of lateral heterogeneities Journal of Geophysical Research. ,vol. 106, pp. 11169- 11199 ,(2001) , 10.1029/2001JB000340
Peter M. Shearer, T. Guy Masters, Global mapping of topography on the 660-km discontinuity Nature. ,vol. 355, pp. 791- 796 ,(1992) , 10.1038/355791A0
Thorne Lay, Hiroo Kanamori, Geometric effects of global lateral heterogeneity on long‐period surface wave propagation Journal of Geophysical Research. ,vol. 90, pp. 605- 621 ,(1985) , 10.1029/JB090IB01P00605
Guust Nolet, F. A. Dahlen, Wave front healing and the evolution of seismic delay times Journal of Geophysical Research: Solid Earth. ,vol. 105, pp. 19043- 19054 ,(2000) , 10.1029/2000JB900161
Jeroen Tromp, Göran Ekström, Zheng Wang, Global and regional surface-wave inversions: A spherical-spline parameterization Geophysical Research Letters. ,vol. 25, pp. 207- 210 ,(1998) , 10.1029/97GL03634