On a Heuristic Expansion Method in the Strong Localization Regime of the Theory of Disordered Systems

作者: L. Pastur

DOI: 10.1007/978-94-011-4193-2_10

关键词:

摘要: We present a method that allows us to compute various spectral and physical characteristics of disordered systems in the strong localization regime, i.e. when either random potential is big enough or if energy close spectrum edges. The based on hypothesis regime relevant realizations have form deep wells are uniformly chaotically distributed space, can be parameterized by at least one continuously parameter small density. Assuming this using density expansion analysis tunnelling system several we show first coincides leading order with states. Thus states fact theory regime. Then derive Mott formula for low frequency conductivity asymptotic formulas density-density correlation functions difference energies small.

参考文章(14)
Wilhelm von Waldenfels, Taylor expansion of a poisson measure Séminaire de probabilités de Strasbourg. ,vol. 8, pp. 344- 354 ,(1974) , 10.1007/BFB0057274
Eugene Yankovsky, L. A. Pastur, S. A. Gredeskul, I. M. Lifshit︠s︡, Introduction to the Theory of Disordered Systems ,(1988)
Alexander Figotin, Leonid Pastur, Spectra of Random and Almost-Periodic Operators ,(1991)
T. Datta, Electronic properties of non-crystalline materials Applied physics communications. ,vol. 3, pp. 1- 31 ,(1983)
A.A. Abrikosov, I.A. Ryzhkin, Conductivity of quasi-one-dimensional metal systems Advances in Physics. ,vol. 27, pp. 147- 230 ,(1978) , 10.1080/00018737800101364
Fr�d�ric Klopp, INTERNAL LIFSHITS TAILS FOR RANDOM PERTURBATIONS OF PERIODIC SCHRODINGER OPERATORS Duke Mathematical Journal. ,vol. 98, pp. 335- 396 ,(1999) , 10.1215/S0012-7094-99-09810-1
Alain-Sol Sznitman, Lifschitz tail and Wiener sausage, II Journal of Functional Analysis. ,vol. 94, pp. 223- 246 ,(1990) , 10.1016/0022-1236(90)90012-A