Existence of Solutions to Some Classical Variational Problems

作者: Antonio Greco

DOI: 10.1007/978-88-470-2841-8_9

关键词:

摘要: Some non-coercive variational integrals are considered, including the classical time-of-transit functional arising in problem of brachistochrone, and area minimal surface revolution. A minimizer is constructed by means direct method. More precisely, each admissible curve replaced its convex envelope, shown to decrease. Hence, there exists a minimizing sequence made up curves, which turn possesses locally uniformly converging subsequence. The limiting because functionals under consideration continuous such convergence.

参考文章(22)
Paolo Marcellini, Non convex integrals of the Calculus of Variations Springer Berlin Heidelberg. pp. 16- 57 ,(1990) , 10.1007/BFB0084930
Giuseppe Buttazzo, Stefan Hildebrandt, Mariano Giaquinta, One-dimensional variational problems : an introduction Clarendon Press. ,(1998)
Bruce Van Brunt, The calculus of variations ,(2003)
Leonida Tonelli, Fondamenti di calcolo delle variazioni Nicola Zanichelli. ,(1921)
Galileo Galilei, Antonio Beltrán, Mariapiera Marenzana, Andrea Frova, Dialogo : sopra i due massimi sistemi del mondo Biblioteca Universale Rizzoli. ,(1988)
E. Francini, P. Salani, A. Colesanti, Convexity and asymptotic estimates for large solutions of Hessian equations Differential and Integral Equations. ,vol. 13, pp. 1459- 1472 ,(2000)
O. Alvarez, J.-M. Lasry, P.-L. Lions, Convex viscosity solutions and state constraints Journal de Mathématiques Pures et Appliquées. ,vol. 76, pp. 265- 288 ,(1997) , 10.1016/S0021-7824(97)89952-7