Optimal outlier removal in high-dimensional

作者: John Dunagan , Santosh Vempala

DOI: 10.1145/380752.380860

关键词:

摘要: We study the problem of finding an outlier-free subset a set points (or probability distribution) in n-dimensional Euclidean space. A point x is defined to be β-outlier if there exists some direction w which its squared distance from mean along greater than β times average [1]. Our main theorem that for any e>0, (1-e) fraction original distribution has no O(\frac{n}{e}(b+log \frac{n}{e))-outliers, improving on previous bound O(n^7b/e). This shown nearly best possible. The constructive, and results \frac{1}{1-e} approximation following optimization problem: given μ (i.e. ability sample it), parameter find minimum at least with β-outliers.

参考文章(5)
Ravi Kannan, L�szl� Lov�sz, Mikl�s Simonovits, Random walks and an O * ( n 5 ) volume algorithm for convex bodies Random Structures and Algorithms. ,vol. 11, pp. 1- 50 ,(1997) , 10.1002/(SICI)1098-2418(199708)11:1<1::AID-RSA1>3.0.CO;2-X
R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma Discrete & Computational Geometry. ,vol. 13, pp. 541- 559 ,(1995) , 10.1007/BF02574061
Avrim Blum, Goran Konjevod, R. Ravi, Santosh Vempala, Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems symposium on the theory of computing. pp. 100- 105 ,(1998) , 10.1145/276698.276717
A. Blum, A. Frieze, R. Kannan, S. Vempala, A polynomial-time algorithm for learning noisy linear threshold functions foundations of computer science. ,vol. 22, pp. 330- 338 ,(1996) , 10.1007/PL00013833
Charles R. Johnson, Roger A. Horn, Matrix Analysis ,(1985)