Analysis of stochastic approximation schemes with discontinuous and dependent forcing terms with applications to data communication algorithms

作者: A. Benveniste , M. Goursat , G. Ruget

DOI: 10.1109/TAC.1980.1102497

关键词:

摘要: A general convergence result is given for stochastic approximation schemes with (or without) equality constraints. The following features are taken into account. forcing term a strongly dependent sequence and may be discontinuous. Many examples to illustrate the applicability of theorem, both classical (recursive least squares scheme) nonclassical ones (arising in theory self-adaptive eqnalizers).

参考文章(10)
H. Kushner, Convergence of recursive adaptive and identification procedures via weak convergence theory IEEE Transactions on Automatic Control. ,vol. 22, pp. 921- 930 ,(1977) , 10.1109/TAC.1977.1101647
R. Z. Has’minskii, On Stochastic Processes Defined by Differential Equations with a Small Parameter Theory of Probability & Its Applications. ,vol. 11, pp. 211- 228 ,(1966) , 10.1137/1111018
Harold J. Kushner, Rates of Convergence for Sequential Monte Carlo Optimization Methods SIAM Journal on Control and Optimization. ,vol. 16, pp. 150- 168 ,(1978) , 10.1137/0316012
D. L. McLeish, Dependent Central Limit Theorems and Invariance Principles Annals of Probability. ,vol. 2, pp. 620- 628 ,(1974) , 10.1214/AOP/1176996608
D. L. McLeish, A Maximal Inequality and Dependent Strong Laws Annals of Probability. ,vol. 3, pp. 829- 839 ,(1975) , 10.1214/AOP/1176996269
D. L. McLeish, Invariance principles for dependent variables Probability Theory and Related Fields. ,vol. 32, pp. 165- 178 ,(1975) , 10.1007/BF00532611
A. Benveniste, M. Goursat, G. Ruget, Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications IEEE Transactions on Automatic Control. ,vol. 25, pp. 385- 399 ,(1980) , 10.1109/TAC.1980.1102343
L. Ljung, Analysis of recursive stochastic algorithms IEEE Transactions on Automatic Control. ,vol. 22, pp. 551- 575 ,(1977) , 10.1109/TAC.1977.1101561
D. L. McLeish, Functional and random central limit theorems for the Robbins-Munro process Journal of Applied Probability. ,vol. 13, pp. 148- 154 ,(1976) , 10.1017/S0021900200049111
R. Azencott, G. Ruget, Mélanges d'équations différentielles et grands écarts à la loi des grands nombres Probability Theory and Related Fields. ,vol. 38, pp. 1- 54 ,(1977) , 10.1007/BF00534169