A Bayesian Approach to Calibration Intervals and Properly Calibrated Tolerance Intervals

作者: M. Hamada , A. Pohl , C. Spiegelman , J. Wendelberger

DOI: 10.1080/00224065.2003.11980207

关键词:

摘要: In this article we consider a Bayesian approach to inference in which there is calibration relationship between measured and true quantities of interest. One situation useful for unknowns inwhich intervals are obtained. The other when about population desired tolerance produced. easily handles general relationship, say nonlinear, with nonnormal errors. may also be general, lognormal, nonnegative. illustrated three examples implemented the freely available WinBUGS software.

参考文章(8)
Jeri M. Mulrow, Dominic F. Vecchia, John P. Buonaccorsi, Hari K. Iyer, Problems with Interval Estimation When Data are Adjusted via Calibration Journal of Quality Technology. ,vol. 20, pp. 233- 247 ,(1988) , 10.1080/00224065.1988.11979116
Bruce Hoadley, A Bayesian Look at Inverse Linear Regression Journal of the American Statistical Association. ,vol. 65, pp. 356- 369 ,(1970) , 10.1080/01621459.1970.10481085
William G. Hunter, Warren F. Lamboy, A Bayesian Analysis of the Linear Calibration Problem Technometrics. ,vol. 23, pp. 323- 328 ,(1981) , 10.1080/00401706.1981.10487672
M. Ghosh, B. P. Carlin, M. S. Srivastava, Probability matching priors for linear calibration Test. ,vol. 4, pp. 333- 357 ,(1995) , 10.1007/BF02562631
Alan E. Gelfand, Adrian F. M. Smith, Sampling-Based Approaches to Calculating Marginal Densities Journal of the American Statistical Association. ,vol. 85, pp. 398- 409 ,(1990) , 10.1080/01621459.1990.10476213
Siddhartha Chib, Edward Greenberg, Understanding the Metropolis-Hastings Algorithm The American Statistician. ,vol. 49, pp. 327- 335 ,(1995) , 10.1080/00031305.1995.10476177
Amy Racine-Poon, A Bayesian Approach to Nonlinear Calibration Problems Journal of the American Statistical Association. ,vol. 83, pp. 650- 656 ,(1988) , 10.1080/01621459.1988.10478644
George Casella, Edward I. George, Explaining the Gibbs Sampler The American Statistician. ,vol. 46, pp. 167- 174 ,(1992) , 10.1080/00031305.1992.10475878