The one-dimensional electromagnetic induction problem: model refinement

作者: R. S. Anderssen

DOI: 10.1111/J.1365-246X.1979.TB03772.X

关键词:

摘要: Summary. Using a variational formulation for the response function V(r), commonly used in inversion of electromagnetic induction data spherically symmetric earth, number independent expressions total variation this with respect to perturbations (electrical) conductivity S o have been derived. These results indicate: (1) How boundary constraints contained V(r) affect any computational implementation. (2) refinement modelling can be implemented iteratively without use linearization. In addition, these examine validity Parker's linearization proposal by showing that his depend heavily on exclusion certain constraints, and choice L2 norm as use.

参考文章(9)
G. E. Backus, J. F. Gilbert, Numerical Applications of a Formalism for Geophysical Inverse Problems Geophysical Journal International. ,vol. 13, pp. 247- 276 ,(1967) , 10.1111/J.1365-246X.1967.TB02159.X
R. L. Parker, The Inverse Problem of Electrical Conductivity in the Mantle Geophysical Journal International. ,vol. 22, pp. 121- 138 ,(1971) , 10.1111/J.1365-246X.1971.TB03587.X
Robert L. Parker, The Fr�chet derivative for the one-dimensional electromagnetic induction problem Geophysical Journal International. ,vol. 49, pp. 543- 547 ,(1977) , 10.1111/J.1365-246X.1977.TB03723.X
R.S. Anderssen, On the inversion of global electromagnetic induction data Physics of the Earth and Planetary Interiors. ,vol. 10, pp. 292- 298 ,(1975) , 10.1016/0031-9201(75)90055-2
R. S. Anderssen, Note on conductivity models for the Earth Journal of Geophysical Research. ,vol. 73, pp. 6535- 6543 ,(1968) , 10.1029/JB073I020P06535
Jack Graves, P. M. Prenter, Numerical iterative filters applied to first kind Fredholm integral equations Numerische Mathematik. ,vol. 30, pp. 281- 299 ,(1978) , 10.1007/BF01411844
Grace Wahba, Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy SIAM Journal on Numerical Analysis. ,vol. 14, pp. 651- 667 ,(1977) , 10.1137/0714044