Time delays in n -species competition – I: Global stability in constant environments

作者: K. Gopalsamy , R.A. Ahlip

DOI: 10.1017/S0004972700025934

关键词:

摘要: Sufficient conditions which are verifiable in a finite number of arithmetical steps derived for the existence and global asymptotic stability feasible steady state an integro-differential system modelling dynamics n competing species constant environment with delayed interspecific interactions. A novel method involving nested sequence “asymptotic” upper lower bounds is developed.

参考文章(15)
Terry L. Herdman, Harlan W. Stech, Samuel M. Rankin, Integral and Functional Differential Equations ,(1981)
Vito Volterra, Marcel Brelot, Leçons sur la théorie mathématique de la lutte pour la vie Éditions Jacques Gabay. ,(1931)
J. Coste, J. Peyraud, P. Coullet, Does complexity favor the existence perpersistent ecosystems? Journal of Theoretical Biology. ,vol. 73, pp. 359- 362 ,(1978) , 10.1016/0022-5193(78)90196-0
K GOPALSAMY, B AGGARWALA, The logistic equation with a diffusionally coupled delay Bulletin of Mathematical Biology. ,vol. 43, pp. 125- 140 ,(1981) , 10.1016/S0092-8240(81)90011-2
Stavros N Busenberg, Curtis C Travis, On the use of reducible-functional differential equations in biological models Journal of Mathematical Analysis and Applications. ,vol. 89, pp. 46- 66 ,(1982) , 10.1016/0022-247X(82)90090-7
Thomas C. Gard, Persistence in food webs: holling-type food chains Mathematical Biosciences. ,vol. 49, pp. 61- 67 ,(1980) , 10.1016/0025-5564(80)90110-8
T GARD, T HALLAM, Persistence in food webs—I Lotka-Volterra food chains Bulletin of Mathematical Biology. ,vol. 41, pp. 877- 891 ,(1979) , 10.1016/S0092-8240(79)80024-5
Thomas C. Gard, Persistence in food chains with general interactions Mathematical Biosciences. ,vol. 51, pp. 165- 174 ,(1980) , 10.1016/0025-5564(80)90096-6
Angelika Wörz-Busekros, Global Stability in Ecological Systems with Continuous Time Delay SIAM Journal on Applied Mathematics. ,vol. 35, pp. 123- 134 ,(1978) , 10.1137/0135011
B.S. Goh, Sector stability of a complex ecosystem model Mathematical Biosciences. ,vol. 40, pp. 157- 166 ,(1978) , 10.1016/0025-5564(78)90078-0