Detecting and Tracking Political Abuse in Social Media

作者: Jacob Ratkiewicz , Alessandro Flammini , Mark Meiss , Michael D. Conover , Filippo Menczer Menczer

DOI:

关键词:

摘要: We study astroturf political campaigns on microblogging platforms: politically-motivated individuals and organizations that use multiple centrally-controlled accounts to create the appearance of widespread support for a candidate or opinion. We describe a machine learning framework that combines topological, content-based and crowdsourced features of information diffusion networks on Twitter to detect the early stages of viral spreading of political misinformation. We present promising preliminary results with better than 96 …

参考文章(36)
Alain Barrat, Marc Barthlemy, Alessandro Vespignani, Dynamical Processes on Complex Networks ,(2008)
J. Heer, D. Boyd, Vizster: visualizing online social networks ieee symposium on information visualization. pp. 5- 5 ,(2005) , 10.1109/INFOVIS.2005.39
Andranik Tumasjan, Isabell M. Welpe, Philipp G. Sandner, Timm Oliver Sprenger, Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment international conference on weblogs and social media. ,(2010)
Wolfgang Kellerer, Wojciech Galuba, Karl Aberer, Zoran Despotovic, Dipanjan Chakraborty, Outtweeting the twitterers - predicting information cascades in microblogs workshop on online social networks. pp. 3- 3 ,(2010)
Zi Chu, Steven Gianvecchio, Haining Wang, Sushil Jajodia, Who is tweeting on Twitter: human, bot, or cyborg? annual computer security applications conference. pp. 21- 30 ,(2010) , 10.1145/1920261.1920265
Bernardo A. Huberman, Lada A. Adamic, Jure Leskovec, The dynamics of viral marketing ACM Transactions on The Web. ,vol. 1, pp. 5- ,(2007) , 10.1145/1232722.1232727
Manuel Gomez Rodriguez, Jure Leskovec, Andreas Krause, Inferring networks of diffusion and influence knowledge discovery and data mining. pp. 1019- 1028 ,(2010) , 10.1145/1835804.1835933
Haixun Wang, Wei Fan, Philip S. Yu, Jiawei Han, Mining concept-drifting data streams using ensemble classifiers knowledge discovery and data mining. pp. 226- 235 ,(2003) , 10.1145/956750.956778