Quantum dynamics of hydrogen atom in complex space

作者: Ciann-Dong Yang

DOI: 10.1016/J.AOP.2005.04.015

关键词:

摘要: Abstract We show in this paper that the electron’s quantum dynamics hydrogen atom can be modeled exactly by Hamilton–Jacobi formalism. It is found quantizations of energy, angular momentum, and action variable ∫p dq are all originated from complex motion, shell structure observed indeed potential, which forces acting upon electron uniquely determined, stability atomic configuration justified, trajectories derived accordingly. Based on trajectory, we explain why appears at some positions with large probability, while other small probability. The maximum probability predicted standard mechanics to just stable equilibrium points non-linear dynamics. discovered very diverse strongly state-dependent; them open non-periodic, closed periodic. Over such a great diversity orbits, commensurability condition ensuring existence orbit will de Broglie’s standing wave pattern identified. Along investigation orbits atom, also clarify old using concept classical correctly predict energy quantization meanwhile it not applicable general system. Finally, internal mechanism how precessing, non-conical eigen-trajectories evolve continuously classical, non-precessing, conical as n → ∞ explained detail.

参考文章(36)
Moncy V. John, Modified De Broglie-Bohm Approach to Quantum Mechanics Journal of Genetic Counseling. ,vol. 15, pp. 329- 343 ,(2014) , 10.1023/A:1021212410819
Edward R. Floyd, Reflection time and the Goos-Hänchen effect for reflection by a semi-infinite rectangular barrier Foundations of Physics Letters. ,vol. 13, pp. 235- 251 ,(2000) , 10.1023/A:1007848020324
R. S. Bhalla, A. K. Kapoor, P. K. Panigrahi, Energy Eigenvalues for a Class of One-Dimensional Potentials via Quantum Hamilton-Jacobi Formalism Modern Physics Letters A. ,vol. 12, pp. 295- 306 ,(1997) , 10.1142/S0217732397000297
Alon E. Faraggi, Marco Matone, Quantum mechanics from an equivalence principle Physics Letters B. ,vol. 450, pp. 34- 40 ,(1999) , 10.1016/S0370-2693(99)00113-6
R. S. Bhalla, A. K. Kapoor, P. K. Panigrahi, Quantum Hamilton–Jacobi formalism and the bound state spectra American Journal of Physics. ,vol. 65, pp. 1187- 1194 ,(1997) , 10.1119/1.18773
JC Pissondes, None, ‘Scale covariant’ representation of quantum mechanics. Energy in scale-relativity theory Chaos, Solitons & Fractals. ,vol. 9, pp. 1115- 1142 ,(1998) , 10.1016/S0960-0779(97)00139-2
James Baker-Jarvis, Pavel Kabos, Modified de Broglie approach applied to the Schrödinger and Klein-Gordon equations Physical Review A. ,vol. 68, pp. 042110- ,(2003) , 10.1103/PHYSREVA.68.042110
A. Bouda, T. Djama, Quantum Newton's law Physics Letters A. ,vol. 285, pp. 27- 33 ,(2001) , 10.1016/S0375-9601(01)00312-7