Maximal regularity of parabolic transmission problems

作者: Herbert Amann

DOI: 10.1007/S00028-020-00612-Y

关键词:

摘要: Linear reaction–diffusion equations with inhomogeneous boundary and transmission conditions are shown to possess the property of maximal $$L_\mathrm{p}$$  regularity. The new feature is fact that interface allowed intersect domain transversally.

参考文章(38)
Herbert Amann, Linear and Quasilinear Parabolic Problems Birkhäuser Basel. ,(1995) , 10.1007/978-3-0348-9221-6
Victor Nistor, Anna L. Mazzucato, Hengguang Li, ANALYSIS OF THE FINITE ELEMENT METHOD FOR TRANSMISSION/MIXED BOUNDARY VALUE PROBLEMS ON GENERAL POLYGONAL DOMAINS ∗ Electronic Transactions on Numerical Analysis. ,vol. 37, pp. 41- 69 ,(2010)
Hengguang Li, Victor Nistor, Yu Qiao, Uniform Shift Estimates for Transmission Problems and Optimal Rates of Convergence for the Parametric Finite Element Method international conference on numerical analysis and its applications. pp. 12- 23 ,(2012) , 10.1007/978-3-642-41515-9_2
B. Lawruk, Joseph Wloka, B. Rowley, Boundary value problems for elliptic systems ,(1995)
Gieri Simonett, Herbert Amann, Matthias Georg Hieber, Bounded $H_\infty$-calculus for elliptic operators Differential and Integral Equations. ,vol. 7, pp. 613- 653 ,(1994)
Herbert Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems Differential and Integral Equations. ,vol. 3, pp. 13- 75 ,(1990)
Herbert Amann, Uniformly Regular and Singular Riemannian Manifolds Elliptic and Parabolic Equations. pp. 1- 43 ,(2015) , 10.1007/978-3-319-12547-3_1
Herbert Amann, Anisotropic Function Spaces on Singular Manifolds arXiv: Functional Analysis. ,(2012)
Herbert Amann, Existence and regularity for semilinear parabolic evolution equations Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 11, pp. 593- 676 ,(1984)