A stabilized Galerkin method for a third-order evolutionary problem

作者: Graeme Fairweather , J. M. Sanz-Serna , I. Christie

DOI: 10.1090/S0025-5718-1990-1035932-9

关键词:

摘要: The periodic initial value problem for the partial differential equa- tion ut + uxxx s(u )x 2{u )xx euxx - outx = 0, e , o > arises in fluidization models. numerical integration of is a difficult task that many "reasonable" finite difference and element methods give rise to unstable discretizations. We show how modify standard Galerkin technique order stabilize it. Optimal-order error estimates are derived results experiments presented. stabilization suggested paper can be interpreted as rewriting Sobolev form would also useful other equations involving terms u, Sulx .

参考文章(10)
LARS B. WAHLBIN, A Dissipative Galerkin Method for the Numerical Solution of First Order Hyperbolic Equations Mathematical Aspects of Finite Elements in Partial Differential Equations#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, April 1–3, 1974. pp. 147- 169 ,(1974) , 10.1016/B978-0-12-208350-1.50010-8
Mitsuhiro T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension Numerische Mathematik. ,vol. 47, pp. 139- 157 ,(1985) , 10.1007/BF01389881
Todd Dupont, Graeme Fairweather, J. Peter Johnson, THREE-LEVEL GALERKIN METHODS FOR PARABOLIC EQUATIONS* SIAM Journal on Numerical Analysis. ,vol. 11, pp. 392- 410 ,(1974) , 10.1137/0711034
Gary H. Ganser, Donald A. Drew, Nonlinear periodic waves in a two-phase flow model Siam Journal on Applied Mathematics. ,vol. 47, pp. 726- 736 ,(1987) , 10.1137/0147050
J. E. Dendy, Two Methods of Galerkin Type Achieving Optimum $L^2 $ Rates of Convergence for First Order Hyperbolics SIAM Journal on Numerical Analysis. ,vol. 11, pp. 637- 653 ,(1974) , 10.1137/0711052
Philippe G. Ciarlet, J. T. Oden, The Finite Element Method for Elliptic Problems ,(1978)
Douglas N. Arnold, Jim Douglas, Vidar Thom{ée, Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable Mathematics of Computation. ,vol. 36, pp. 53- 63 ,(1981) , 10.1090/S0025-5718-1981-0595041-4
Ian Christie, G.H Ganser, A numerical study of nonlinear waves arising in a one-dimensional model of a fluidized bed Journal of Computational Physics. ,vol. 81, pp. 300- 318 ,(1989) , 10.1016/0021-9991(89)90210-6
L. Abia, I. Christie, J. M. Sanz-Serna, Stability of schemes for the numerical treatment of an equation modelling fluidized beds Mathematical Modelling and Numerical Analysis. ,vol. 23, pp. 191- 204 ,(1989) , 10.1051/M2AN/1989230201911
Lars B. Wahlbin, A dissipative Galerkin method applied to some quasilinear hyperbolic equations Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique. ,vol. 8, pp. 109- 117 ,(1974) , 10.1051/M2AN/197408R201091