Diagrammatics for Bose condensation in anyon theories

作者: I. S. Eliëns , J. C. Romers , F. A. Bais

DOI: 10.1103/PHYSREVB.90.195130

关键词:

摘要: We reformulate the topological symmetry-breaking scheme for phase transitions in systems with anyons a graphical manner. A set of quantities called vertex lifiting coefficients (VLCs) is introduced and used to specify full operator content broken phase. First, it shown how assumption that charges behaves like vacuum new theory naturally leads diagrammatic consistency conditions condensate. This recovers notion condensate earlier approaches uncovers connection pure mathematics. The VLCs are needed solve establish mapping fusion splitting spaces into parent enables one calculate data $(S,T,R$, $F$ matrices) condensed closed-form expressions terms provided. furthermore furnish concrete recipe lift arbitrary diagrams directly from original using only limited number we describe method explicit calculation large class bosonic condensates. allows condensed-phase many physically relevant cases representative examples worked out detail.

参考文章(60)
K. v. Klitzing, G. Dorda, M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance Physical Review Letters. ,vol. 45, pp. 494- 497 ,(1980) , 10.1103/PHYSREVLETT.45.494
D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential Physical Review Letters. ,vol. 49, pp. 405- 408 ,(1992) , 10.1103/PHYSREVLETT.49.405
Shinsei Ryu, Andreas P Schnyder, Akira Furusaki, Andreas W W Ludwig, Topological insulators and superconductors: ten-fold way and dimensional hierarchy arXiv: Mesoscale and Nanoscale Physics. ,(2009) , 10.1088/1367-2630/12/6/065010
C. L. Kane, E. J. Mele, Quantum spin Hall effect in graphene Physical Review Letters. ,vol. 95, pp. 226801- 226801 ,(2005) , 10.1103/PHYSREVLETT.95.226801
B. Andrei Bernevig, Shou-Cheng Zhang, Quantum Spin Hall Effect Physical Review Letters. ,vol. 96, pp. 106802- ,(2006) , 10.1103/PHYSREVLETT.96.106802
F A Bais, J C Romers, The modular S-matrix as order parameter for topological phase transitions arXiv: Mesoscale and Nanoscale Physics. ,(2011) , 10.1088/1367-2630/14/3/035024
Edward Witten, Quantum field theory and the Jones polynomial Communications in Mathematical Physics. ,vol. 121, pp. 351- 399 ,(1989) , 10.1007/BF01217730
F. Alexander Bais, Peter van Driel, Mark de Wild Propitius, Quantum symmetries in discrete gauge theories arXiv: High Energy Physics - Theory. ,(1992) , 10.1016/0370-2693(92)90773-W
Michael A. Levin, Xiao-Gang Wen, String-net condensation: A physical mechanism for topological phases Physical Review B. ,vol. 71, pp. 045110- ,(2005) , 10.1103/PHYSREVB.71.045110