Vector Autoregressive Models for Multivariate Time Series

作者: Eric Zivot , Jiahui Wang

DOI: 10.1007/978-0-387-21763-5_11

关键词:

摘要: The vector autoregression (VAR) model is one of the most successful, flexible, and easy to use models for the analysis of multivariate time series. It is a natural extension of the …

参考文章(18)
Terence C. Mills, The Econometric Modelling of Financial Time Series Cambridge University Press. ,(1999) , 10.1017/CBO9780511754128
Robert Fildes, Journal of business and economic statistics 5 International Journal of Forecasting. ,vol. 4, pp. 509- 510 ,(1988) , 10.1016/0169-2070(88)90121-5
Christopher A. Sims, Tao Zha, Bayesian methods for dynamic multivariate models International Economic Review. ,vol. 39, pp. 949- 968 ,(1998) , 10.2307/2527347
Mark W. Watson, Vector autoregressions and cointegration Research Papers in Economics. ,vol. 4, pp. 2843- 2915 ,(1993)
Andrew W. Lo, John Y. Campbell, A. Craig MacKinlay, The econometrics of financial markets ,(1997)
Christopher A. Sims, MACROECONOMICS AND REALITY Econometrica. ,vol. 48, pp. 1- 48 ,(1980) , 10.2307/1912017
David E. Runkle, Vector Autoregressions and Reality Journal of Business & Economic Statistics. ,vol. 5, pp. 437- 442 ,(1987) , 10.1198/073500102753410435
Thomas Doan, Robert Litterman, Christopher Sims, Forecasting and conditional projection using realistic prior distributions Econometric Reviews. ,vol. 3, pp. 1- 100 ,(1984) , 10.3386/W1202