Infinite-Horizon Discrete-Time Optimal Control Problems

作者: A. Leizarowitz

DOI: 10.1023/A:1024077306226

关键词:

摘要: The study of optimal control problems defined on infinite intervals has recently been a rapidly growing area research. These arise in engineering [1,2], models economic growth [5,16,26–28,40], discrete solid-state physics related to dislocations one-dimensional crystals [3,31], and the theory thermodynamical equilibrium for materials [7,14,17–20,34,35,37]. In this survey, we consider discrete-time problems. Sections 2 3 are devoted autonomous discretetime systems compact metric spaces. Sec. 2, present two fundamental tools an horizon: reduction finite cost representation formula established [9]. 3, number results obtained [32,33] which establish existence weakly solutions horizon describe their structure. turnpike theorem infinite-dimensional system with convex function [39] is considered 4. 5, discuss generalization result class nonautonomous nonconvex [41]. Section 6 Lagrange multipliers periodic [15]. 7, finite-state Markov decision processes [11,13].

参考文章(33)
V. L. Makarov, Aleksandr Moiseevich Rubinov, Mathematical Theory of Economic Dynamics and Equilibria ,(1977)
Bernard D. Coleman, Moshe Marcus, Victor J. Mizel, On the thermodynamics of periodic phases Archive for Rational Mechanics and Analysis. ,vol. 117, pp. 321- 347 ,(1992) , 10.1007/BF00376187
S. Aubry, P.Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions Physica D: Nonlinear Phenomena. ,vol. 8, pp. 381- 422 ,(1983) , 10.1016/0167-2789(83)90233-6
Arie Leizarowitz, Optimal trajectories of infinite-horizon deterministic control systems Applied Mathematics and Optimization. ,vol. 19, pp. 11- 32 ,(1989) , 10.1007/BF01448190
Arie Leizarowitz, Existence of Overtaking Optimal Trajectories for Problems with Convex Integrands Mathematics of Operations Research. ,vol. 10, pp. 450- 461 ,(1985) , 10.1287/MOOR.10.3.450
A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost Applied Mathematics and Optimization. ,vol. 13, pp. 19- 43 ,(1985) , 10.1007/BF01442197
B. D. O. Anderson, J. B. Moore, B. P. Molinari, Linear Optimal Control IEEE Transactions on Systems, Man, and Cybernetics. ,vol. 2, pp. 559- 559 ,(1972) , 10.1109/TSMC.1972.4309169
Z. Artstein, A. Leizarowitz, Tracking periodic signals with the overtaking criterion IEEE Transactions on Automatic Control. ,vol. 30, pp. 1123- 1126 ,(1985) , 10.1109/TAC.1985.1103851