Open Quantum Walks on Graphs

作者: S. Attal , F. Petruccione , I. Sinayskiy

DOI: 10.1016/J.PHYSLETA.2012.03.040

关键词:

摘要: Open quantum walks (OQW) are formulated as Markov chains on graphs. It is shown that OQWs a very useful tool for the formulation of dissipative computing algorithms and state preparation. In particular, single qubit gates CNOT-gate implemented fully connected Also, preparation arbitrary states all two-qubit Bell-states demonstrated. Finally, discrete time version to be more efficient if in language OQWs.

参考文章(52)
D. Giulini, H. D. Zeh, Erich Joos, Claus Kiefer, I.-O. Stamatescu, Joachim Kupsch, Decoherence and the Appearance of a Classical World in Quantum Theory ,(1996)
Markus Grassl, Martin Rötteler, Quantum Error Correction and Fault Tolerant Quantum Computing. Encyclopedia of Complexity and Systems Science. pp. 7324- 7342 ,(2009)
Francesco Petruccione, Heinz-Peter Breuer, The Theory of Open Quantum Systems ,(2002)
Philippe Blanchard, Robert Olkiewicz, Decoherence as Irreversible Dynamical Process in Open Quantum Systems OPEN QUANTUM SYSTEMS III: RECENT DEVELOPMENTS. ,vol. 1882, pp. 117- 159 ,(2006) , 10.1007/3-540-33967-1_3
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
J. D. Dollard, A. Böhm, Karl Kraus, W. H. Wootters, States, Effects, and Operations: Fundamental Notions of Quantum Theory ,(1983)
Daniel Shapira, Ofer Biham, A. J. Bracken, Michelle Hackett, One-dimensional quantum walk with unitary noise Physical Review A. ,vol. 68, pp. 062315- ,(2003) , 10.1103/PHYSREVA.68.062315
Demosthenes Ellinas, Ioannis Smyrnakis, Quantum optical random walk: Quantization rules and quantum simulation of asymptotics Physical Review A. ,vol. 76, pp. 022333- ,(2007) , 10.1103/PHYSREVA.76.022333
Andrew M. Childs, Wim van Dam, Quantum algorithms for algebraic problems Reviews of Modern Physics. ,vol. 82, pp. 1- 52 ,(2010) , 10.1103/REVMODPHYS.82.1
Viv Kendon, Ben Tregenna, Decoherence can be useful in quantum walks Physical Review A. ,vol. 67, pp. 042315- ,(2003) , 10.1103/PHYSREVA.67.042315