Loofah-based microalgae and cyanobacteria biocomposites for intensifying carbon dioxide capture

作者: Pichaya In-na , Abbas A. Umar , Adam D. Wallace , Michael C. Flickinger , Gary S. Caldwell

DOI: 10.1016/J.JCOU.2020.101348

关键词:

摘要: Abstract Microalgae and cyanobacteria have been evaluated for biological CO2 capture from flue gases over 40 years; however, commercial open ponds photobioreactors suffer many drawbacks including a slow rate of high water usage. We evaluate an intensified 3D cell immobilisation approach with small demand, by coating latex binders onto defined surface area (947 m2 m−3) void space (81.78 ± 4.41 %) loofah sponge scaffolds, forming porous biocomposites three microalgae species; freshwater Chlorella vulgaris, marine Dunaliella salina Nannochloropsis oculata, two strains Synechococcus elongatus cyanobacteria. Binder toxicity adhesion screening protocols were established ahead eight weeks semi-batch six continuous fixation trials. Acrylic polyurethane effective microalgae, bio-based (Replebin®) suited The highest average net rates each species 0.17 0.01, 0.25 0.12 0.68 0.18 0.93 0.30 g g-1biomass d-1 C. D. salina, N. S. PCC 7942 CCAP 1479/1A respectively. This equates to predicted scaled systems up 340.11 110 tCO2 t-1biomass yr-1. Analysis the kinetics absorbtion SEM imaging suggests that cells embedded within polymer film covered scaffold. Biocomposites continuously fed 5% had lipid contents approaching 70 % dry weight. biocomposite shows promise intensify possible application in bioenergy carbon storage (BECCS).

参考文章(83)
R. D. Heins, R. W. Thimijan, Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion Hortscience. ,vol. 18, pp. 818- 822 ,(1983)
Philip Kosky, Robert Balmer, William Keat, George Wise, Design Step 3. Evaluation of Alternatives and Selection of a Concept Exploring Engineering (Third Edition). pp. 383- 396 ,(2013) , 10.1016/B978-0-12-415891-7.00020-0
Ela Eroglu, Steven M. Smith, Colin L. Raston, Application of Various Immobilization Techniques for Algal Bioprocesses Biofuel and Biorefinery Technologies. pp. 19- 44 ,(2015) , 10.1007/978-3-319-16640-7_2
Daniella Schatz, Elad Nagar, Eleonora Sendersky, Rami Parnasa, Shaul Zilberman, Shmuel Carmeli, Yitzhak Mastai, Eyal Shimoni, Eugenia Klein, Orna Yeger, Ziv Reich, Rakefet Schwarz, Self-suppression of biofilm formation in the cyanobacterium Synechococcus elongatus Environmental Microbiology. ,vol. 15, pp. 1786- 1794 ,(2013) , 10.1111/1462-2920.12070
Víctor de Lorenzo, Ildefonso Cases, Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. International Microbiology. ,vol. 8, pp. 213- 222 ,(2005) , 10.13039/501100000780
Navid Reza Moheimani, Michael A. Borowitzka, Andreas Isdepsky, Sophie Fon Sing, Standard Methods for Measuring Growth of Algae and Their Composition Moheimani, N.R. <https://researchrepository.murdoch.edu.au/view/author/Moheimani, Navid.html>ORCID: 0000-0003-2310-4147 <http://orcid.org/0000-0003-2310-4147>, Borowitzka, M.A. <https://researchrepository.murdoch.edu.au/view/author/Borowitzka, Michael.html>ORCID: 0000-0001-6504-4563 <http://orcid.org/0000-0001-6504-4563>, Isdepsky, A. <https://researchrepository.murdoch.edu.au/view/author/Isdepsky, Andreas.html> and Fon Sing, S. <https://researchrepository.murdoch.edu.au/view/author/Fon Sing, Sophie.html> (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka, M.A. and Moheimani, N.R., (eds.) Algae for Biofuels and Energy. Springer, Dordrecht, pp. 265-284.. pp. 265- 284 ,(2013) , 10.1007/978-94-007-5479-9_16
Linda Stalker, Steven A. Wakelin, Bobby Pejcic, Matthew I. Leybourne, Allison L. Hortle, Karsten Michael, Ryan R.P. Noble, Biological monitoring for carbon capture and storage – A review and potential future developments International Journal of Greenhouse Gas Control. ,vol. 10, pp. 520- 535 ,(2012) , 10.1016/J.IJGGC.2012.07.022
Nobutaka Hanagata, Toshifumi Takeuchi, Yoshiharu Fukuju, David J. Barnes, Isao Karube, Tolerance of microalgae to high CO2 and high temperature Phytochemistry. ,vol. 31, pp. 3345- 3348 ,(1992) , 10.1016/0031-9422(92)83682-O