Subquadratic Space-Complexity Digit-Serial Multipliers Over $GF(2^{m})$ Using Generalized $(a,b)$ -Way Karatsuba Algorithm

作者: Chiou-Yng Lee , Pramod Kumar Meher

DOI: 10.1109/TCSI.2015.2388842

关键词:

摘要: Karatsuba algorithm (KA) is popularly used for high-precision multiplication by divide-and-conquer approach. Recently, subquadratic digit-serial multiplier based on $(a,2)$ -way KA decomposition proposed in [1]. In this paper, we extend a to derive generalized $(a,b)$ with $a\neq b$ . We have shown that and mult-way are special cases of the decomposition. Based decomposition, established two types multipliers, namely, KA-based recombined multiplier. From theoretical analysis, as well as, from synthesis results multipliers significantly less delay area-delay product (ADP) compared existing naive multipliers.

参考文章(20)
Arash Hariri, Arash Reyhani-Masoleh, Digit-Serial Structures for the Shifted Polynomial Basis Multiplication over Binary Extension Fields international conference on arithmetic of finite fields. pp. 103- 116 ,(2008) , 10.1007/978-3-540-69499-1_9
Nicolas Estibals, Compact hardware for computing the tate pairing over 128-bit-security supersingular curves international conference on pairing based cryptography. ,vol. 6487, pp. 397- 416 ,(2010) , 10.1007/978-3-642-17455-1_25
Christof Paar, André Weimerskirch, Generalizations of the Karatsuba Algorithm for Efficient Implementations. IACR Cryptology ePrint Archive. ,vol. 2006, pp. 224- ,(2006)
C.-Y. LEE, Low-Complexity Parallel Systolic Montgomery Multipliers over GF(2m) Using Toeplitz Matrix-Vector Representation IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 91, pp. 1470- 1477 ,(2008) , 10.1093/IETFEC/E91-A.6.1470
Che Wun Chiou, Chiou-Yng Lee, Multiplexer-based double-exponentiation for normal basis of GF(2m) Computers & Security. ,vol. 24, pp. 83- 86 ,(2005) , 10.1016/J.COSE.2004.09.012
José L. Imaña, Román Hermida, Francisco Tirado, Low complexity bit-parallel polynomial basis multipliers over binary fields for special irreducible pentanomials Integration. ,vol. 46, pp. 197- 210 ,(2013) , 10.1016/J.VLSI.2011.12.006
Chiou-Yng Lee, Chun-Sheng Yang, Bimal Kumar Meher, Pramod Kumar Meher, Jeng-Shyang Pan, Low-Complexity Digit-Serial and Scalable SPB/GPB Multipliers Over Large Binary Extension Fields Using (b,2)-Way Karatsuba Decomposition IEEE Transactions on Circuits and Systems I-regular Papers. ,vol. 61, pp. 3115- 3124 ,(2014) , 10.1109/TCSI.2014.2335031
Ali Zakerolhosseini, Morteza Nikooghadam, Low-power and high-speed design of a versatile bit-serial multiplier in finite fields GF(2m) Integration. ,vol. 46, pp. 211- 217 ,(2013) , 10.1016/J.VLSI.2012.03.001
Chiou-Yng Lee, Che Wun Chiou, Scalable Gaussian Normal Basis Multipliers over GF(2 m ) Using Hankel Matrix-Vector Representation Journal of Signal Processing Systems. ,vol. 69, pp. 197- 211 ,(2012) , 10.1007/S11265-011-0654-2
Chiou-Yng Lee, Pramod Kumar Meher, Chien-Ping Chang, Efficient $M$ -ary Exponentiation over $GF(2^{m})$ Using Subquadratic KA-Based Three-Operand Montgomery Multiplier IEEE Transactions on Circuits and Systems. ,vol. 61, pp. 3125- 3134 ,(2014) , 10.1109/TCSI.2014.2334992