The boundary integral equation approach for numerical solution of the one-dimensional Sine-Gordon equation

作者: Mehdi Dehghan , Davoud Mirzaei

DOI: 10.1002/NUM.20325

关键词:

摘要: This article describes a numerical method based on the boundary integral equation and dual reciprocity for solving one-dimensional Sine-Gordon (SG) equation. The time derivative is approximated by time-stepping predictor–corrector scheme employed to deal with nonlinearity which appears in problem. Numerical results are presented some problems demonstrate usefulness accuracy of this approach. In addition, conservation energy SG investigated. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq

参考文章(37)
J.K. Perring, T.H.R. Skyrme, A Model unified field equation Nuclear Physics. ,vol. 31, pp. 550- 555 ,(1962) , 10.1016/0029-5582(62)90774-5
Whye-Teong Ang, A numerical method for the wave equation subject to a non-local conservation condition Applied Numerical Mathematics. ,vol. 56, pp. 1054- 1060 ,(2006) , 10.1016/J.APNUM.2005.09.006
M. Dehghan, Parameter determination in a partial differential equation from the overspecified data Mathematical and Computer Modelling. ,vol. 41, pp. 196- 213 ,(2005) , 10.1016/J.MCM.2004.07.010
Peter L. Christiansen, Peter S. Lomdahl, Numerical study of 2+1 dimensional sine-Gordon solitons Physica D: Nonlinear Phenomena. ,vol. 2, pp. 482- 494 ,(1981) , 10.1016/0167-2789(81)90023-3
A.G. Bratsos, The solution of the two-dimensional sine-Gordon equation using the method of lines Journal of Computational and Applied Mathematics. ,vol. 206, pp. 251- 277 ,(2007) , 10.1016/J.CAM.2006.07.002
Guo Ben-Yu, Pedro J. Pascual, María J. Rodriguez, Luis Vázquez, Numerical solution of the sine-Gordon equation Applied Mathematics and Computation. ,vol. 18, pp. 1- 14 ,(1986) , 10.1016/0096-3003(86)90025-1
M.J. Ablowitz, B.M. Herbst, Constance Schober, On the Numerical Solution of the Sine-Gordon Equation Journal of Computational Physics. ,vol. 126, pp. 299- 314 ,(1996) , 10.1006/JCPH.1996.0139
B. M. Herbst, M. J. Ablowitz, NUMERICAL HOMOCLINIC INSTABILITIES IN The SINE-GORDON EQUATION Quaestiones Mathematicae. ,vol. 15, pp. 345- 363 ,(1992) , 10.1080/16073606.1992.9631696
A.G. Bratsos, A third order numerical scheme for the two-dimensional sine-Gordon equation Mathematics and Computers in Simulation. ,vol. 76, pp. 271- 282 ,(2007) , 10.1016/J.MATCOM.2006.11.004