Least Sum of Absolute Deviations Regression: Distance, Leverage, and Influence

作者: Kenneth J. Berry , Paul W. Mielke

DOI: 10.2466/PMS.1998.86.3.1063

关键词:

摘要: Least sum of absolute deviations regression is considered as a robust alternative to least squared regression. A simple example linear utilizing one predictor variable and single extreme value illustrates the potential effects distance, leverage, influence on two models.

参考文章(10)
Roger C. Pfaffenberger, John J. Dinkel, Absolute Deviations Curve Fitting: An Alternative to Least Squares Contributions to Survey Sampling and Applied Statistics. pp. 279- 294 ,(1978) , 10.1016/B978-0-12-204750-3.50026-5
H. A. David, Contributions to Survey Sampling and Applied Statistics Technometrics. ,vol. 20, pp. 321- ,(1978) , 10.2307/1268146
Terry Dielman, Roger Pfaffenberger, Least Absolute Value Regression: Necessary Sample Sizes to Use Normal Theory Inference Procedures* Decision Sciences. ,vol. 19, pp. 734- 743 ,(1988) , 10.1111/J.1540-5915.1988.TB00298.X
Paul Zarembka, Frontiers in econometrics ,(1973)
Terry E. Dielman, A comparison of forecasts from least absolute value and least squares regression Journal of Forecasting. ,vol. 5, pp. 189- 195 ,(1986) , 10.1002/FOR.3980050305
Thomas Mathew, Kenneth Nordström, Least squares and least absolute deviation procedures in approximately linear models Statistics & Probability Letters. ,vol. 16, pp. 153- 158 ,(1993) , 10.1016/0167-7152(93)90160-K
I. Barrodale, F. D. K. Roberts, Solution of an overdetermined system of equations in the l 1 norm [F4] Communications of the ACM. ,vol. 17, pp. 319- 320 ,(1974) , 10.1145/355616.361024
Peter J. Rousseeuw, Least Median of Squares Regression Journal of the American Statistical Association. ,vol. 79, pp. 871- 880 ,(1984) , 10.1080/01621459.1984.10477105