The numerical solution of obstacle problem by self adaptive finite element method

作者: Lian Xue , Minghui Wu

DOI:

关键词:

摘要: In this paper, the bisection of local mesh refinement in self adaptive finite element is applied to obstacle problem elliptic variational inequalities. We try find approximated region contact efficiently. Numerical examples are given for problem.

参考文章(18)
David Kinderlehrer, Guido Stampacchia, An introduction to variational inequalities and their applications ,(1980)
Yongmin Zhang, Multilevel projection algorithm for solving obstacle problems Computers & Mathematics With Applications. ,vol. 41, pp. 1505- 1513 ,(2001) , 10.1016/S0898-1221(01)00115-8
Ralf Kornhuber, Monotone multigrid methods for elliptic variational inequalities I Numerische Mathematik. ,vol. 69, pp. 167- 184 ,(1994) , 10.1007/BF03325426
Khamron Mekchay, Ricardo H. Nochetto, Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs SIAM Journal on Numerical Analysis. ,vol. 43, pp. 1803- 1827 ,(2005) , 10.1137/04060929X
Richard S. Falk, Error estimates for the approximation of a class of variational inequalities Mathematics of Computation. ,vol. 28, pp. 963- 971 ,(1974) , 10.1090/S0025-5718-1974-0391502-8
Ivo G. Rosenberg, Frank Stenger, A lower bound on the angles of triangles constructed by bisecting the longest side Mathematics of Computation. ,vol. 29, pp. 390- 395 ,(1975) , 10.1090/S0025-5718-1975-0375068-5
M. -C. Rivara, M. Vemere, Cost analysis of the longest-side (triangle bisection) refinement algorithm for triangulations Engineering With Computers. ,vol. 12, pp. 224- 234 ,(1996) , 10.1007/BF01198736
María-Cecilia Rivara, Gabriel Iribarren, The 4-triangles longest-side partition of triangles and linear refinement algorithms Mathematics of Computation. ,vol. 65, pp. 1485- 1502 ,(1996) , 10.1090/S0025-5718-96-00772-7