On local Poincaré via transportation

作者: Max-K. von Renesse

DOI: 10.1007/S00209-007-0206-4

关键词:

摘要: It is shown that curvature-dimension bounds CD(N,K) for a metric measure space (X,d,m) in the sense of Sturm imply weak L1-Poincare-inequality provided (X,d) has m-almost surely no branching points.

参考文章(16)
Laurent Saloff-Coste, Aspects of Sobolev-type inequalities Cambridge University Press. ,(2001) , 10.1017/CBO9780511549762
Yukio Otsu, Takashi Shioya, The Riemannian structure of Alexandrov spaces Journal of Differential Geometry. ,vol. 39, pp. 629- 658 ,(1994) , 10.4310/JDG/1214455075
Cédric Villani, Topics in Optimal Transportation ,(2003)
Paolo Tilli, Luigi Ambrosio, Topics on analysis in metric spaces ,(2004)
John Lott, Cedric Villani, Ricci curvature for metric-measure spaces via optimal transport Annals of Mathematics. ,vol. 169, pp. 903- 991 ,(2009) , 10.4007/ANNALS.2009.169.903
J. Cheeger, Differentiability of Lipschitz Functions on Metric Measure Spaces Geometric And Functional Analysis. ,vol. 9, pp. 428- 517 ,(1999) , 10.1007/S000390050094
Dario Cordero-Erausquin, Robert J. McCann, Michael Schmuckenschläger, A Riemannian interpolation inequality a la Borell, Brascamp and Lieb Inventiones Mathematicae. ,vol. 146, pp. 219- 257 ,(2001) , 10.1007/S002220100160
Karl-Theodor Sturm, On the geometry of metric measure spaces. II Acta Mathematica. ,vol. 196, pp. 133- 177 ,(2006) , 10.1007/S11511-006-0003-7
Shin-ichi Ohta, On the measure contraction property of metric measure spaces Commentarii Mathematici Helvetici. ,vol. 82, pp. 805- 828 ,(2007) , 10.4171/CMH/110