Rigorous lower bounds to the first-gradient corrections in the gradient expansion of the kinetic and exchange-energy functionals

作者: Jianmin Tao , Jianmin Li

DOI: 10.1088/0031-8949/54/4/006

关键词:

摘要: Rigorous lower bounds for the first-gradient corrections to kinetic and exchange-energy functionals in atoms are derived using Benson's inequality. They formulated terms of expectation values momentum value a simple manner namely T2[ρ] = (1/72)∫(|∇ρ(r)|2/ρ(r)) dr ≥ (n2/72) rn − 32r2n 4−1 |K2[ρ]| β ∫(|∇ρ(r)|2/ρ4/3(r)) 0.05105 r−12p−1, where n, natural number 1, 2, 3,..., 3 r2n 4 values, p is value, ρ(r) electron density with normalization condition ∫ N, electrons. The this work tested Z 36. A comparison also made previously bound estimates K2[ρ]. presented sharper than previous ones given by Pathak Gadre (atomic units used throughout paper).

参考文章(17)
Shridhar R. Gadre, Shridhar P. Gejji, Rajeev K. Pathak, Electron density to electron momentum density: The use of an energy constraint Physical Review A. ,vol. 27, pp. 3328- 3331 ,(1983) , 10.1103/PHYSREVA.27.3328
Donald C Benson, Inequalities involving integrals of functions and their derivatives Journal of Mathematical Analysis and Applications. ,vol. 17, pp. 292- 308 ,(1967) , 10.1016/0022-247X(67)90154-0
Shridhar R. Gadre, Shridhar P. Gejji, Rajeev K. Pathak, Direct and reverse transformations between electron density and electron momentum density: Connection with the locally averaged method Physical Review A. ,vol. 28, pp. 462- 463 ,(1983) , 10.1103/PHYSREVA.28.462
Gerd Burkhardt, Über die Form der Comptonlinie Annalen der Physik. ,vol. 418, pp. 567- 584 ,(1936) , 10.1002/ANDP.19364180607
C A Coulson, N H March, Momenta in Atoms using the Thomas-Fermi Method Proceedings of the Physical Society. Section A. ,vol. 63, pp. 367- 374 ,(1950) , 10.1088/0370-1298/63/4/306
W. Kohn, L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects Physical Review. ,vol. 140, pp. 1133- 1142 ,(1965) , 10.1103/PHYSREV.140.A1133
Jack Simons, The Hartree-Fock Method for Atoms Nuclear Technology. ,vol. 43, pp. 391- 391 ,(1979) , 10.13182/NT79-A19228
J. C. Slater, A Simplification of the Hartree-Fock Method Physical Review. ,vol. 81, pp. 385- 390 ,(1951) , 10.1103/PHYSREV.81.385
C. F. v. Weizs�cker, Zur Theorie der Kernmassen European Physical Journal. ,vol. 96, pp. 431- 458 ,(1935) , 10.1007/BF01337700