The Transport Capacity of a Wireless Network is a Subadditive Euclidean Functional

作者: Radha Krishna Ganti , Martin Haenggi

DOI: 10.1239/JAP/1285335416

关键词:

摘要: The transport capacity of a dense ad hoc network with n nodes scales like \sqrt(n). We show that the divided by \sqrt(n) approaches non-random limit probability one when are i.i.d. distributed on unit square. prove under protocol model is subadditive Euclidean functional and use machinery functions in spirit Steele to existence limit.

参考文章(10)
J. F. C. Kingman, The Ergodic Theory of Subadditive Stochastic Processes Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 30, pp. 499- 510 ,(1968) , 10.1111/J.2517-6161.1968.TB00749.X
Radha Krishna Ganti, Martin Haenggi, The transport capacity of a wireless network is a subadditive euclidean functional mobile adhoc and sensor systems. pp. 784- 789 ,(2008) , 10.1109/MAHSS.2008.4660124
J. Michael Steele, Subadditive Euclidean Functionals and Nonlinear Growth in Geometric Probability Annals of Probability. ,vol. 9, pp. 365- 376 ,(1981) , 10.1214/AOP/1176994411
WanSoo T. Rhee, A Matching Problem and Subadditive Euclidean Functionals Annals of Applied Probability. ,vol. 3, pp. 794- 801 ,(1993) , 10.1214/AOAP/1177005364
J. Michael Steele, Growth Rates of Euclidean Minimal Spanning Trees With Power Weighted Edges Annals of Probability. ,vol. 16, pp. 1767- 1787 ,(1988) , 10.1214/AOP/1176991596
M. Franceschetti, O. Dousse, D.N.C. Tse, P. Tiran, Closing the gap in the capacity of random wireless networks international symposium on information theory. pp. 438- ,(2004) , 10.1109/ISIT.2004.1365476
Massimo Franceschetti, Olivier Dousse, David N. C. Tse, Patrick Thiran, Closing the Gap in the Capacity of Wireless Networks Via Percolation Theory IEEE Transactions on Information Theory. ,vol. 53, pp. 1009- 1018 ,(2007) , 10.1109/TIT.2006.890791
P. Gupta, P.R. Kumar, The capacity of wireless networks IEEE Transactions on Information Theory. ,vol. 46, pp. 388- 404 ,(2000) , 10.1109/18.825799