Spectrum of certain non-self-adjoint operators and solutions of Langevin equations with complex drift

作者: John R. Klauder , Wesley P. Petersen

DOI: 10.1007/BF01007974

关键词:

摘要: As part of a program to evaluate expectations in complex distributions by longterm averages solutions Langevin equations with dirft, simple one-dimensional example is examined some detail. The validity and rate convergence this scheme depends on the spectrum an associated non-selfadjoint Hamiltonian which found numerically. In regime where stochastic evaluation should be accurate numerical solution equation shows case.

参考文章(12)
J. J. Dongarra, C. B. Moler, G. W. Stewart, J. R. Bunch, LINPACK Users' Guide ,(1987)
D Kahaner, C Überhuber, Robert Piessens, E De Doncker-Kapenga, Quadpack: A Subroutine Package for Automatic Integration ,(2011)
Roger S. Martin, J. H. Wilkinson, Similarity reduction of a general matrix to Hessenberg form Numerische Mathematik. ,vol. 12, pp. 349- 368 ,(1968) , 10.1007/BF02161358
E. Helfand, Numerical Integration of Stochastic Differential Equations Bell System Technical Journal. ,vol. 58, pp. 2289- 2299 ,(1979) , 10.1002/J.1538-7305.1979.TB02967.X
E. Knobloch, K. A. Wiesenfeld, Bifurcations in fluctuating systems: The center-manifold approach Journal of Statistical Physics. ,vol. 33, pp. 611- 637 ,(1983) , 10.1007/BF01018837
B. P., J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation. Vol II, Linear Algebra Mathematics of Computation. ,vol. 27, pp. 670- ,(1973) , 10.2307/2005673
H. R. Schwarz, Tridiagonalization of a symetric band matrix Numerische Mathematik. ,vol. 12, pp. 231- 241 ,(1968) , 10.1007/BF02162505
N. G. Van Kampen, William P. Reinhardt, Stochastic processes in physics and chemistry ,(1981)