Monopropellant Thruster Exhaust Effects upon Spacecraft

作者: WARREN C. LYON

DOI: 10.2514/3.59714

关键词:

摘要: a = ion engine exhaust opening radius A cross-sectional area Ann Einstein coefficient B absorption c speed of light D thruster diameter at the plane e electron charge E energy f oscillator strength (Landenburg/value) h Planck constant / photon intensity J inner quantum number k Boltzmann m atom mass n arrival rate per unit time n}n excitation level n0 neutral density N exchange production JV N" adsorbed atoms N(r,x) r distance from Pa probability P pressure Pv vapor Q cross section t T temperature x measured perpendicular to plume centerline x',y,z dimension as in Fig. 5 a,/3 angles (see 5) F evaporation F(r,0) flow Fa line width AL incremental length 0 angle X wavelength Ho' — which leave v frequency mean life w statistical weight

参考文章(75)
D.D. Evans, T.W. Price, Status of monopropellant hydrazine technology ,(1968)
W. K. Boyd, W. E. Berry, E. L. White, COMPATIBILITY OF MATERIALS WITH ROCKET PROPELLANTS AND OXIDIZERS ,(1965)
J. A. Bearden, A. F. Burr, Atomic energy levels U. S. Atomic Energy Commission. ,(1965)
Masashi Hayakawa, Akira Iwai, PLASMA-INDUCED RADIO FREQUENCY INTERFERENCES FROM SPACE VEHICLE Proceedings of the Research Institute of Atmospherics, Nagoya University. ,vol. 17, pp. 99- 106 ,(1970)
William R. Bozman, Charles H. Corliss, Experimental transition probabilities for spectral lines of seventy elements U. S. Government Printing Office. ,(1962)
C. A. Sperati, H. W. Starkweather, Fluorine-containing polymers. II. Polytetrafluoroethylene Fortschritte Der Hochpolymeren-Forschung. ,vol. 2, pp. 465- 495 ,(1961) , 10.1007/BFB0050504